Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:8544686rdf:typepubmed:Citationlld:pubmed
pubmed-article:8544686lifeskim:mentionsumls-concept:C0012634lld:lifeskim
pubmed-article:8544686lifeskim:mentionsumls-concept:C0026845lld:lifeskim
pubmed-article:8544686lifeskim:mentionsumls-concept:C0598941lld:lifeskim
pubmed-article:8544686lifeskim:mentionsumls-concept:C1511726lld:lifeskim
pubmed-article:8544686lifeskim:mentionsumls-concept:C0220825lld:lifeskim
pubmed-article:8544686lifeskim:mentionsumls-concept:C0024487lld:lifeskim
pubmed-article:8544686lifeskim:mentionsumls-concept:C0868995lld:lifeskim
pubmed-article:8544686lifeskim:mentionsumls-concept:C2004457lld:lifeskim
pubmed-article:8544686lifeskim:mentionsumls-concept:C1553628lld:lifeskim
pubmed-article:8544686pubmed:issue5lld:pubmed
pubmed-article:8544686pubmed:dateCreated1996-2-13lld:pubmed
pubmed-article:8544686pubmed:abstractTextDermatomyositis is an autoimmune disease characterized by an erythematous rash and severe muscle weakness. 31P Magnetic resonance spectroscopy (MRS) provides quantitative data for longitudinal monitoring of disease status and responses to immunosuppressive therapy. A disease variant, amyopathic dermatomyositis, presents with a typical rash but no clinical muscle weakness. However, metabolic abnormalities in the oxidative capacity of muscles of amyopathic patients during exercise were detected with 31P MRS. Because MRS provided the best quantitative data for evaluating dermatomyositis, the 31P metabolic parameters derived from the MR spectra were further processed using an artificial neural network (XERION). The neural network analyses provided additional clinical information from the weighted correlations of multiple 31P parameters, namely, inorganic phosphate, phosphocreatine, ATP, phosphodiesters, and selected ratios. This investigation analyzes the relative importance of the various metabolic parameters for accurate patient characterization and provides insights into the pathogenesis of the disease.lld:pubmed
pubmed-article:8544686pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8544686pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8544686pubmed:languageenglld:pubmed
pubmed-article:8544686pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8544686pubmed:citationSubsetIMlld:pubmed
pubmed-article:8544686pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8544686pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8544686pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8544686pubmed:statusMEDLINElld:pubmed
pubmed-article:8544686pubmed:monthNovlld:pubmed
pubmed-article:8544686pubmed:issn0740-3194lld:pubmed
pubmed-article:8544686pubmed:authorpubmed-author:ParkJ HJHlld:pubmed
pubmed-article:8544686pubmed:authorpubmed-author:OlsenN JNJlld:pubmed
pubmed-article:8544686pubmed:authorpubmed-author:KarpJJlld:pubmed
pubmed-article:8544686pubmed:issnTypePrintlld:pubmed
pubmed-article:8544686pubmed:volume34lld:pubmed
pubmed-article:8544686pubmed:ownerNLMlld:pubmed
pubmed-article:8544686pubmed:authorsCompleteYlld:pubmed
pubmed-article:8544686pubmed:pagination664-72lld:pubmed
pubmed-article:8544686pubmed:dateRevised2007-11-14lld:pubmed
pubmed-article:8544686pubmed:meshHeadingpubmed-meshheading:8544686-...lld:pubmed
pubmed-article:8544686pubmed:meshHeadingpubmed-meshheading:8544686-...lld:pubmed
pubmed-article:8544686pubmed:meshHeadingpubmed-meshheading:8544686-...lld:pubmed
pubmed-article:8544686pubmed:meshHeadingpubmed-meshheading:8544686-...lld:pubmed
pubmed-article:8544686pubmed:meshHeadingpubmed-meshheading:8544686-...lld:pubmed
pubmed-article:8544686pubmed:meshHeadingpubmed-meshheading:8544686-...lld:pubmed
pubmed-article:8544686pubmed:meshHeadingpubmed-meshheading:8544686-...lld:pubmed
pubmed-article:8544686pubmed:meshHeadingpubmed-meshheading:8544686-...lld:pubmed
pubmed-article:8544686pubmed:meshHeadingpubmed-meshheading:8544686-...lld:pubmed
pubmed-article:8544686pubmed:meshHeadingpubmed-meshheading:8544686-...lld:pubmed
pubmed-article:8544686pubmed:meshHeadingpubmed-meshheading:8544686-...lld:pubmed
pubmed-article:8544686pubmed:meshHeadingpubmed-meshheading:8544686-...lld:pubmed
pubmed-article:8544686pubmed:meshHeadingpubmed-meshheading:8544686-...lld:pubmed
pubmed-article:8544686pubmed:meshHeadingpubmed-meshheading:8544686-...lld:pubmed
pubmed-article:8544686pubmed:meshHeadingpubmed-meshheading:8544686-...lld:pubmed
pubmed-article:8544686pubmed:year1995lld:pubmed
pubmed-article:8544686pubmed:articleTitleEvaluation of muscle diseases using artificial neural network analysis of 31P MR spectroscopy data.lld:pubmed
pubmed-article:8544686pubmed:affiliationDepartment of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.lld:pubmed
pubmed-article:8544686pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:8544686pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed
pubmed-article:8544686pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed