pubmed-article:8130515 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:8130515 | lifeskim:mentions | umls-concept:C0020205 | lld:lifeskim |
pubmed-article:8130515 | lifeskim:mentions | umls-concept:C0679225 | lld:lifeskim |
pubmed-article:8130515 | pubmed:dateCreated | 1994-4-21 | lld:pubmed |
pubmed-article:8130515 | pubmed:abstractText | This paper investigates the advantages of introducing feedback between the processes of automated medical diagnosis and automated diagnostic-knowledge acquisition. Experimental results show that a diagnostic system with such feedback is capable of an efficiency/accuracy trade-off when applied to the problem of diagnosing multiple disorders. A primary feature of this work is a new mechanism, called the "diagnostic-unit" representation, for remembering results of previous diagnoses. The diagnostic-unit representation is explicitly tailored to capture the most likely relationships between disorders and clusters of findings. Unlike typical bipartite "If-Then" representations, the diagnostic-unit representation uses a general graph representation to efficiently represent complex causal relationships between disorders and clusters of findings. In addition to the basic diagnostic-unit concept, this paper presents experience-based strategies for incrementally deriving and updating diagnostic units and the various relationships between them. Techniques for selecting diagnostic units relevant to a given problem and then combining them to generate solutions are also described. | lld:pubmed |
pubmed-article:8130515 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:8130515 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:8130515 | pubmed:language | eng | lld:pubmed |
pubmed-article:8130515 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:8130515 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:8130515 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:8130515 | pubmed:issn | 0195-4210 | lld:pubmed |
pubmed-article:8130515 | pubmed:author | pubmed-author:JansUU | lld:pubmed |
pubmed-article:8130515 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:8130515 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:8130515 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:8130515 | pubmed:pagination | 454-60 | lld:pubmed |
pubmed-article:8130515 | pubmed:dateRevised | 2008-11-20 | lld:pubmed |
pubmed-article:8130515 | pubmed:meshHeading | pubmed-meshheading:8130515-... | lld:pubmed |
pubmed-article:8130515 | pubmed:meshHeading | pubmed-meshheading:8130515-... | lld:pubmed |
pubmed-article:8130515 | pubmed:meshHeading | pubmed-meshheading:8130515-... | lld:pubmed |
pubmed-article:8130515 | pubmed:meshHeading | pubmed-meshheading:8130515-... | lld:pubmed |
pubmed-article:8130515 | pubmed:meshHeading | pubmed-meshheading:8130515-... | lld:pubmed |
pubmed-article:8130515 | pubmed:meshHeading | pubmed-meshheading:8130515-... | lld:pubmed |
pubmed-article:8130515 | pubmed:year | 1993 | lld:pubmed |
pubmed-article:8130515 | pubmed:articleTitle | A hybrid system for diagnosing multiple disorders. | lld:pubmed |
pubmed-article:8130515 | pubmed:affiliation | Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge 02139. | lld:pubmed |
pubmed-article:8130515 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:8130515 | pubmed:publicationType | Research Support, U.S. Gov't, P.H.S. | lld:pubmed |
pubmed-article:8130515 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8130515 | lld:pubmed |