Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:8130515rdf:typepubmed:Citationlld:pubmed
pubmed-article:8130515lifeskim:mentionsumls-concept:C0020205lld:lifeskim
pubmed-article:8130515lifeskim:mentionsumls-concept:C0679225lld:lifeskim
pubmed-article:8130515pubmed:dateCreated1994-4-21lld:pubmed
pubmed-article:8130515pubmed:abstractTextThis paper investigates the advantages of introducing feedback between the processes of automated medical diagnosis and automated diagnostic-knowledge acquisition. Experimental results show that a diagnostic system with such feedback is capable of an efficiency/accuracy trade-off when applied to the problem of diagnosing multiple disorders. A primary feature of this work is a new mechanism, called the "diagnostic-unit" representation, for remembering results of previous diagnoses. The diagnostic-unit representation is explicitly tailored to capture the most likely relationships between disorders and clusters of findings. Unlike typical bipartite "If-Then" representations, the diagnostic-unit representation uses a general graph representation to efficiently represent complex causal relationships between disorders and clusters of findings. In addition to the basic diagnostic-unit concept, this paper presents experience-based strategies for incrementally deriving and updating diagnostic units and the various relationships between them. Techniques for selecting diagnostic units relevant to a given problem and then combining them to generate solutions are also described.lld:pubmed
pubmed-article:8130515pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8130515pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8130515pubmed:languageenglld:pubmed
pubmed-article:8130515pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8130515pubmed:citationSubsetIMlld:pubmed
pubmed-article:8130515pubmed:statusMEDLINElld:pubmed
pubmed-article:8130515pubmed:issn0195-4210lld:pubmed
pubmed-article:8130515pubmed:authorpubmed-author:JansUUlld:pubmed
pubmed-article:8130515pubmed:issnTypePrintlld:pubmed
pubmed-article:8130515pubmed:ownerNLMlld:pubmed
pubmed-article:8130515pubmed:authorsCompleteYlld:pubmed
pubmed-article:8130515pubmed:pagination454-60lld:pubmed
pubmed-article:8130515pubmed:dateRevised2008-11-20lld:pubmed
pubmed-article:8130515pubmed:meshHeadingpubmed-meshheading:8130515-...lld:pubmed
pubmed-article:8130515pubmed:meshHeadingpubmed-meshheading:8130515-...lld:pubmed
pubmed-article:8130515pubmed:meshHeadingpubmed-meshheading:8130515-...lld:pubmed
pubmed-article:8130515pubmed:meshHeadingpubmed-meshheading:8130515-...lld:pubmed
pubmed-article:8130515pubmed:meshHeadingpubmed-meshheading:8130515-...lld:pubmed
pubmed-article:8130515pubmed:meshHeadingpubmed-meshheading:8130515-...lld:pubmed
pubmed-article:8130515pubmed:year1993lld:pubmed
pubmed-article:8130515pubmed:articleTitleA hybrid system for diagnosing multiple disorders.lld:pubmed
pubmed-article:8130515pubmed:affiliationLaboratory for Computer Science, Massachusetts Institute of Technology, Cambridge 02139.lld:pubmed
pubmed-article:8130515pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:8130515pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed
pubmed-article:8130515pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:8130515lld:pubmed