Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:7905907rdf:typepubmed:Citationlld:pubmed
pubmed-article:7905907lifeskim:mentionsumls-concept:C0034559lld:lifeskim
pubmed-article:7905907lifeskim:mentionsumls-concept:C0013171lld:lifeskim
pubmed-article:7905907lifeskim:mentionsumls-concept:C1553879lld:lifeskim
pubmed-article:7905907pubmed:issue1lld:pubmed
pubmed-article:7905907pubmed:dateCreated1994-3-17lld:pubmed
pubmed-article:7905907pubmed:abstractTextRadiation chemistry can contribute to drug design by quantifying redox properties of drugs (useful parameters in quantitative structure-activity relationships), and where free radicals are suspected intermediates in drug action, radiation can be used to generate these putative species and help characterize relevant reactions. Steady radiolysis produces radicals at a readily-varied but quantified rate; pulse radiolysis with fast spectrophotometric and/or conductimetric detection enables the kinetic properties of radicals to be monitored directly. Using these methods, radical intermediates from drugs with specific cytotoxicity towards hypoxic cells have been shown to react rapidly with oxygen, a reaction probably responsible for the therapeutic differential. Radical oxidants from activated neutrophils include superoxide and hydroxyl radicals, and radiation-chemical methods have an important role to play in rational drug design to exploit such oxidative chemistry. Antioxidants can also be evaluated quantitatively by radiolysis methods; the conjugation reactions of thiyl radicals with thiolate and oxygen are now recognised to be major contributions of pulse radiolysis to thiol biochemistry.lld:pubmed
pubmed-article:7905907pubmed:languageenglld:pubmed
pubmed-article:7905907pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7905907pubmed:citationSubsetIMlld:pubmed
pubmed-article:7905907pubmed:statusMEDLINElld:pubmed
pubmed-article:7905907pubmed:monthJanlld:pubmed
pubmed-article:7905907pubmed:issn0955-3002lld:pubmed
pubmed-article:7905907pubmed:authorpubmed-author:WardmanPPlld:pubmed
pubmed-article:7905907pubmed:authorpubmed-author:TracyMMlld:pubmed
pubmed-article:7905907pubmed:authorpubmed-author:CandeiasL PLPlld:pubmed
pubmed-article:7905907pubmed:authorpubmed-author:EverettS ASAlld:pubmed
pubmed-article:7905907pubmed:issnTypePrintlld:pubmed
pubmed-article:7905907pubmed:volume65lld:pubmed
pubmed-article:7905907pubmed:ownerNLMlld:pubmed
pubmed-article:7905907pubmed:authorsCompleteYlld:pubmed
pubmed-article:7905907pubmed:pagination35-41lld:pubmed
pubmed-article:7905907pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:7905907pubmed:meshHeadingpubmed-meshheading:7905907-...lld:pubmed
pubmed-article:7905907pubmed:meshHeadingpubmed-meshheading:7905907-...lld:pubmed
pubmed-article:7905907pubmed:year1994lld:pubmed
pubmed-article:7905907pubmed:articleTitleRadiation chemistry applied to drug design.lld:pubmed
pubmed-article:7905907pubmed:affiliationCancer Research Campaign Gray Laboratory, Mount Vernon Hospital, Northwood, UK.lld:pubmed
pubmed-article:7905907pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:7905907pubmed:publicationTypeReviewlld:pubmed
pubmed-article:7905907pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:7905907lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:7905907lld:pubmed