Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:7619499rdf:typepubmed:Citationlld:pubmed
pubmed-article:7619499lifeskim:mentionsumls-concept:C0086418lld:lifeskim
pubmed-article:7619499lifeskim:mentionsumls-concept:C0035696lld:lifeskim
pubmed-article:7619499lifeskim:mentionsumls-concept:C1412135lld:lifeskim
pubmed-article:7619499lifeskim:mentionsumls-concept:C1880022lld:lifeskim
pubmed-article:7619499pubmed:issue1lld:pubmed
pubmed-article:7619499pubmed:dateCreated1995-8-29lld:pubmed
pubmed-article:7619499pubmed:abstractTextAlternatively spliced mRNAs encoding the human intraacrosomal protein SP-10 were sought by the reverse transcriptase polymerase chain reaction (RTPCR). Eleven RTPCR products were identified, characterized, and found to represent authentic alternatively spliced SP-10 mRNAs. The 11 alternatively spliced SP-10 mRNAs encoded proteins ranging from 81 to 265 amino acids. The 10 smaller variants all resulted from one or two in-frame deletions in exons 2 and/or 3 of the SP-10 genomic sequence. Quantitative competitive RTPCR showed that the four largest SP-10 mRNAs represented the majority (> 99%) of the SP-10 message in testes from each of four men. The relative abundance of each of the four SP-10 mRNAs varied between individuals, but the longest SP-10 mRNA, SP10-1, which encoded a 265 amino acid protein, was consistently the most abundant, comprising 53-72% of the total SP-10 message. This was followed by the second largest SP-10 mRNA, SP10-2, which encoded a protein of 246 amino acids and comprised 15-32%. The third and fourth largest SP-10 mRNAs, SP10-3 and SP10-4, encoded proteins of 210 and 195 amino acids and accounted for 3.4-8.3% and 8.7-12.5% of the total SP-10 messages, respectively. The remaining 7 SP-10 mRNAs combined accounted for < 1% of the total SP-10 message. Within the low abundance group of mRNAs were two that deleted the entire third exon of SP-10. The present study suggests that phenomena of cryptic splicing and exon skipping occur within the SP-10 mRNA. Along with proteolysis, alternative splicing also helps to explain the heterogeneous forms of SP-10 that have been observed on Western blots of human sperm extracts.lld:pubmed
pubmed-article:7619499pubmed:languageenglld:pubmed
pubmed-article:7619499pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7619499pubmed:citationSubsetIMlld:pubmed
pubmed-article:7619499pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7619499pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7619499pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7619499pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7619499pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7619499pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7619499pubmed:statusMEDLINElld:pubmed
pubmed-article:7619499pubmed:monthMaylld:pubmed
pubmed-article:7619499pubmed:issn1040-452Xlld:pubmed
pubmed-article:7619499pubmed:authorpubmed-author:FlickingerC...lld:pubmed
pubmed-article:7619499pubmed:authorpubmed-author:HerrJ CJClld:pubmed
pubmed-article:7619499pubmed:authorpubmed-author:FreemermanA...lld:pubmed
pubmed-article:7619499pubmed:issnTypePrintlld:pubmed
pubmed-article:7619499pubmed:volume41lld:pubmed
pubmed-article:7619499pubmed:ownerNLMlld:pubmed
pubmed-article:7619499pubmed:authorsCompleteYlld:pubmed
pubmed-article:7619499pubmed:pagination100-8lld:pubmed
pubmed-article:7619499pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:7619499pubmed:meshHeadingpubmed-meshheading:7619499-...lld:pubmed
pubmed-article:7619499pubmed:meshHeadingpubmed-meshheading:7619499-...lld:pubmed
pubmed-article:7619499pubmed:meshHeadingpubmed-meshheading:7619499-...lld:pubmed
pubmed-article:7619499pubmed:meshHeadingpubmed-meshheading:7619499-...lld:pubmed
pubmed-article:7619499pubmed:meshHeadingpubmed-meshheading:7619499-...lld:pubmed
pubmed-article:7619499pubmed:meshHeadingpubmed-meshheading:7619499-...lld:pubmed
pubmed-article:7619499pubmed:meshHeadingpubmed-meshheading:7619499-...lld:pubmed
pubmed-article:7619499pubmed:meshHeadingpubmed-meshheading:7619499-...lld:pubmed
pubmed-article:7619499pubmed:meshHeadingpubmed-meshheading:7619499-...lld:pubmed
pubmed-article:7619499pubmed:meshHeadingpubmed-meshheading:7619499-...lld:pubmed
pubmed-article:7619499pubmed:meshHeadingpubmed-meshheading:7619499-...lld:pubmed
pubmed-article:7619499pubmed:meshHeadingpubmed-meshheading:7619499-...lld:pubmed
pubmed-article:7619499pubmed:meshHeadingpubmed-meshheading:7619499-...lld:pubmed
pubmed-article:7619499pubmed:meshHeadingpubmed-meshheading:7619499-...lld:pubmed
pubmed-article:7619499pubmed:year1995lld:pubmed
pubmed-article:7619499pubmed:articleTitleCharacterization of alternatively spliced human SP-10 mRNAs.lld:pubmed
pubmed-article:7619499pubmed:affiliationDepartment of Cell Biology, University of Virginia, Charlottesville 22908, USA.lld:pubmed
pubmed-article:7619499pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:7619499pubmed:publicationTypeComparative Studylld:pubmed
entrez-gene:56entrezgene:pubmedpubmed-article:7619499lld:entrezgene
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:7619499lld:pubmed