Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:6874498rdf:typepubmed:Citationlld:pubmed
pubmed-article:6874498lifeskim:mentionsumls-concept:C0221464lld:lifeskim
pubmed-article:6874498lifeskim:mentionsumls-concept:C0231800lld:lifeskim
pubmed-article:6874498lifeskim:mentionsumls-concept:C0869014lld:lifeskim
pubmed-article:6874498lifeskim:mentionsumls-concept:C0030604lld:lifeskim
pubmed-article:6874498lifeskim:mentionsumls-concept:C0348080lld:lifeskim
pubmed-article:6874498pubmed:issue6lld:pubmed
pubmed-article:6874498pubmed:dateCreated1983-9-20lld:pubmed
pubmed-article:6874498pubmed:abstractTextInert tracer gas exchange across the human respiratory system is simulated in an asymmetric lung model for different oscillatory breathing patterns. The momentary volume-averaged alveolar partial pressure (PA), the expiratory partial pressure (PE), the mixed expiratory partial pressure (PE), the end-tidal partial pressure (PET), and the mean arterial partial pressure (Pa), are calculated as functions of the blood-gas partition coefficient (lambda) and the diffusion coefficient (D) of the tracer gas. The lambda values vary from 0.01 to 330.0 inclusive, and four values of D are used (0.5, 0.22, 0.1, and 0.01). Three ventilation-perfusion conditions corresponding to rest and mild and moderate exercise are simulated. Under simulated exercise conditions, we compute a reversed difference between PET and Pa compared with the rest condition. This reversal is directly reflected in the relation between the physiological dead space fraction (1--PE/Pa) and the Bohr dead space fraction (1--PE/PET). It is argued that the difference (PET--Pa) depends on the lambda of the tracer gas, the buffering capacity of lung tissue, and the stratification caused by diffusion-limited gas transport in the gas phase. Finally some determinants for the reversed difference (PET--Pa) and the significance for conventional gas analysis are discussed.lld:pubmed
pubmed-article:6874498pubmed:languageenglld:pubmed
pubmed-article:6874498pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:6874498pubmed:citationSubsetIMlld:pubmed
pubmed-article:6874498pubmed:statusMEDLINElld:pubmed
pubmed-article:6874498pubmed:monthJunlld:pubmed
pubmed-article:6874498pubmed:issn0161-7567lld:pubmed
pubmed-article:6874498pubmed:authorpubmed-author:ZwartAAlld:pubmed
pubmed-article:6874498pubmed:authorpubmed-author:de VriesW RWRlld:pubmed
pubmed-article:6874498pubmed:authorpubmed-author:LuijendijkS...lld:pubmed
pubmed-article:6874498pubmed:issnTypePrintlld:pubmed
pubmed-article:6874498pubmed:volume54lld:pubmed
pubmed-article:6874498pubmed:ownerNLMlld:pubmed
pubmed-article:6874498pubmed:authorsCompleteYlld:pubmed
pubmed-article:6874498pubmed:pagination1745-53lld:pubmed
pubmed-article:6874498pubmed:dateRevised2004-11-17lld:pubmed
pubmed-article:6874498pubmed:meshHeadingpubmed-meshheading:6874498-...lld:pubmed
pubmed-article:6874498pubmed:meshHeadingpubmed-meshheading:6874498-...lld:pubmed
pubmed-article:6874498pubmed:meshHeadingpubmed-meshheading:6874498-...lld:pubmed
pubmed-article:6874498pubmed:meshHeadingpubmed-meshheading:6874498-...lld:pubmed
pubmed-article:6874498pubmed:meshHeadingpubmed-meshheading:6874498-...lld:pubmed
pubmed-article:6874498pubmed:meshHeadingpubmed-meshheading:6874498-...lld:pubmed
pubmed-article:6874498pubmed:meshHeadingpubmed-meshheading:6874498-...lld:pubmed
pubmed-article:6874498pubmed:meshHeadingpubmed-meshheading:6874498-...lld:pubmed
pubmed-article:6874498pubmed:year1983lld:pubmed
pubmed-article:6874498pubmed:articleTitleExpiratory and arterial partial pressure relations under different ventilation-perfusion conditions.lld:pubmed
pubmed-article:6874498pubmed:publicationTypeJournal Articlelld:pubmed