Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:6865352rdf:typepubmed:Citationlld:pubmed
pubmed-article:6865352lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:6865352lifeskim:mentionsumls-concept:C0232338lld:lifeskim
pubmed-article:6865352lifeskim:mentionsumls-concept:C0034106lld:lifeskim
pubmed-article:6865352lifeskim:mentionsumls-concept:C0441640lld:lifeskim
pubmed-article:6865352lifeskim:mentionsumls-concept:C1704474lld:lifeskim
pubmed-article:6865352lifeskim:mentionsumls-concept:C2699787lld:lifeskim
pubmed-article:6865352pubmed:issue2lld:pubmed
pubmed-article:6865352pubmed:dateCreated1983-8-11lld:pubmed
pubmed-article:6865352pubmed:abstractTextBlood flow-through segments of large arteries of man, between adjacent bifurcations, can be modeled as pulsatile flow in tapered converging tubes, of small angle of convergence, up to 2 deg. Assuming linearity, rigid tube and homogeneous Newtonian fluid, the physiological flow field is governed by the Navier-Stokes equation with dominant nonlinear and unsteady terms. Analytical solution of this problem is presented based on an integral method technique. The solution shows that even for small tapering the flow pattern is markedly different from the flow obtained for a uniform tube. The periodic shear stresses at the wall and pressure gradients increase both in their mean value and amplitude with increased distance downstream. These results are highly significant in the process of atherogenesis.lld:pubmed
pubmed-article:6865352pubmed:languageenglld:pubmed
pubmed-article:6865352pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:6865352pubmed:citationSubsetIMlld:pubmed
pubmed-article:6865352pubmed:statusMEDLINElld:pubmed
pubmed-article:6865352pubmed:monthMaylld:pubmed
pubmed-article:6865352pubmed:issn0148-0731lld:pubmed
pubmed-article:6865352pubmed:authorpubmed-author:DinnarUUlld:pubmed
pubmed-article:6865352pubmed:authorpubmed-author:KimmelEElld:pubmed
pubmed-article:6865352pubmed:issnTypePrintlld:pubmed
pubmed-article:6865352pubmed:volume105lld:pubmed
pubmed-article:6865352pubmed:ownerNLMlld:pubmed
pubmed-article:6865352pubmed:authorsCompleteYlld:pubmed
pubmed-article:6865352pubmed:pagination112-9lld:pubmed
pubmed-article:6865352pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:6865352pubmed:meshHeadingpubmed-meshheading:6865352-...lld:pubmed
pubmed-article:6865352pubmed:meshHeadingpubmed-meshheading:6865352-...lld:pubmed
pubmed-article:6865352pubmed:meshHeadingpubmed-meshheading:6865352-...lld:pubmed
pubmed-article:6865352pubmed:meshHeadingpubmed-meshheading:6865352-...lld:pubmed
pubmed-article:6865352pubmed:meshHeadingpubmed-meshheading:6865352-...lld:pubmed
pubmed-article:6865352pubmed:meshHeadingpubmed-meshheading:6865352-...lld:pubmed
pubmed-article:6865352pubmed:meshHeadingpubmed-meshheading:6865352-...lld:pubmed
pubmed-article:6865352pubmed:year1983lld:pubmed
pubmed-article:6865352pubmed:articleTitlePulsatile flow in tapered tubes: a model of blood flow with large disturbances.lld:pubmed
pubmed-article:6865352pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:6865352pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed