Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:6498185rdf:typepubmed:Citationlld:pubmed
pubmed-article:6498185lifeskim:mentionsumls-concept:C0086418lld:lifeskim
pubmed-article:6498185lifeskim:mentionsumls-concept:C0014792lld:lifeskim
pubmed-article:6498185lifeskim:mentionsumls-concept:C0005822lld:lifeskim
pubmed-article:6498185lifeskim:mentionsumls-concept:C0022702lld:lifeskim
pubmed-article:6498185lifeskim:mentionsumls-concept:C1159731lld:lifeskim
pubmed-article:6498185lifeskim:mentionsumls-concept:C1515926lld:lifeskim
pubmed-article:6498185pubmed:issue1lld:pubmed
pubmed-article:6498185pubmed:dateCreated1984-12-28lld:pubmed
pubmed-article:6498185pubmed:abstractTextThe transmembrane equilibration of radiolabeled uridine was measured by rapid kinetic techniques in human erythrocytes from freshly drawn blood and in the same cells during conventional storage of the blood as well as in cells from outdated blood. Our results confirm earlier reports that the maximum velocity of uridine equilibrium exchange (Vee) at 25 degrees C is about 30% lower in outdated than fresh red cells, whereas the opposite is the case for the Michaelis-Menten constant for equilibrium exchange (Kee), and that maximum zero-trans efflux (Vzt21) is about 4-times greater than maximum zero-trans influx (Vzt12) in outdated cells (directional asymmetry), whereas they are about the same in fresh red cells. At 25 degrees C, the nucleoside-loaded carrier of fresh cells moves on the average 6-times more rapidly than the empty carrier, whereas the differential mobility of loaded and empty carrier from outdated cells is about 15-fold. Our results also show that greater efflux than influx in outdated cells is not due to a general leakiness of outdated cells, that the differences in kinetic properties of the transporter developed during the first two weeks of blood storage and that the differences are greatly amplified when transport is measured at 5 degrees C rather than 25 degrees C. At 5 degrees C, the loaded carrier from outdated red cells moves about 325-times more rapidly than the empty carrier and maximum zero-trans efflux exceeds maximum zero-trans influx about 14-times, whereas the transport of fresh cells exhibits directional symmetry just as at 25 degrees C. The changes in kinetic properties of transport induced by temperature and storage are probably related to structural alterations in the plasma membrane and suggest that the operation of carrier is subject to modification by the membrane environment. Other results show that the kinetics of the sugar transport of human red cells is not affected in the same manner by blood storage as those of the nucleoside transporter.lld:pubmed
pubmed-article:6498185pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:6498185pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:6498185pubmed:languageenglld:pubmed
pubmed-article:6498185pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:6498185pubmed:citationSubsetIMlld:pubmed
pubmed-article:6498185pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:6498185pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:6498185pubmed:statusMEDLINElld:pubmed
pubmed-article:6498185pubmed:monthNovlld:pubmed
pubmed-article:6498185pubmed:issn0006-3002lld:pubmed
pubmed-article:6498185pubmed:authorpubmed-author:PlagemannP...lld:pubmed
pubmed-article:6498185pubmed:authorpubmed-author:WohlhueterR...lld:pubmed
pubmed-article:6498185pubmed:issnTypePrintlld:pubmed
pubmed-article:6498185pubmed:day21lld:pubmed
pubmed-article:6498185pubmed:volume778lld:pubmed
pubmed-article:6498185pubmed:ownerNLMlld:pubmed
pubmed-article:6498185pubmed:authorsCompleteYlld:pubmed
pubmed-article:6498185pubmed:pagination176-84lld:pubmed
pubmed-article:6498185pubmed:dateRevised2008-11-21lld:pubmed
pubmed-article:6498185pubmed:meshHeadingpubmed-meshheading:6498185-...lld:pubmed
pubmed-article:6498185pubmed:meshHeadingpubmed-meshheading:6498185-...lld:pubmed
pubmed-article:6498185pubmed:meshHeadingpubmed-meshheading:6498185-...lld:pubmed
pubmed-article:6498185pubmed:meshHeadingpubmed-meshheading:6498185-...lld:pubmed
pubmed-article:6498185pubmed:meshHeadingpubmed-meshheading:6498185-...lld:pubmed
pubmed-article:6498185pubmed:meshHeadingpubmed-meshheading:6498185-...lld:pubmed
pubmed-article:6498185pubmed:meshHeadingpubmed-meshheading:6498185-...lld:pubmed
pubmed-article:6498185pubmed:meshHeadingpubmed-meshheading:6498185-...lld:pubmed
pubmed-article:6498185pubmed:meshHeadingpubmed-meshheading:6498185-...lld:pubmed
pubmed-article:6498185pubmed:meshHeadingpubmed-meshheading:6498185-...lld:pubmed
pubmed-article:6498185pubmed:year1984lld:pubmed
pubmed-article:6498185pubmed:articleTitleKinetics of nucleoside transport in human erythrocytes. Alterations during blood preservation.lld:pubmed
pubmed-article:6498185pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:6498185pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:6498185lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:6498185lld:pubmed