Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:3744738rdf:typepubmed:Citationlld:pubmed
pubmed-article:3744738lifeskim:mentionsumls-concept:C0425710lld:lifeskim
pubmed-article:3744738lifeskim:mentionsumls-concept:C0242485lld:lifeskim
pubmed-article:3744738lifeskim:mentionsumls-concept:C0449851lld:lifeskim
pubmed-article:3744738lifeskim:mentionsumls-concept:C0039807lld:lifeskim
pubmed-article:3744738pubmed:issue8lld:pubmed
pubmed-article:3744738pubmed:dateCreated1986-10-3lld:pubmed
pubmed-article:3744738pubmed:abstractTextRecent advances in the diagnosis and treatment of cardiovascular pathology, including balloon angioplasty of atherosclerotic lesions in peripheral vascular disease, have led to an increased need for in vivo quantitation of blood flow. This study has three purposes: (1) to validate thermodilution techniques as a viable method for measuring low blood flow rates, (2) to calibrate accurately thermodilution catheters at these low flows, and (3) to develop an animal model that can be used to quantitate and compare many different flow measuring techniques. Modified commercially available 6F thermodilution catheters were used with a standard cardiac output computer to measure flows between 200 and 700 ml/minute. Eight anesthetized dogs were surgically interfaced with a variable flow, pressure, and compliance carotid-carotid/jugular bypass perfusion system. Three milliliters of normal saline at room temperature were injected through the catheters intra-arterially to measure different flows below, at, and above physiologic pressures and compliances. Results of this study indicate that with proper calibration, thermodilution techniques of measuring arterial and venous flows between 200 and 700 ml/minute are simple, accurate, and reliable. Using the designed system to generate known flows in vivo at various physiologic conditions allowed easy calibration of catheters and should facilitate calibration and comparison of other measurement techniques.lld:pubmed
pubmed-article:3744738pubmed:languageenglld:pubmed
pubmed-article:3744738pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:3744738pubmed:citationSubsetIMlld:pubmed
pubmed-article:3744738pubmed:statusMEDLINElld:pubmed
pubmed-article:3744738pubmed:monthAuglld:pubmed
pubmed-article:3744738pubmed:issn0020-9996lld:pubmed
pubmed-article:3744738pubmed:authorpubmed-author:AndersonJ HJHlld:pubmed
pubmed-article:3744738pubmed:authorpubmed-author:WhiteR IRIJrlld:pubmed
pubmed-article:3744738pubmed:authorpubmed-author:GreeneA SASlld:pubmed
pubmed-article:3744738pubmed:authorpubmed-author:NadelS NSNlld:pubmed
pubmed-article:3744738pubmed:issnTypePrintlld:pubmed
pubmed-article:3744738pubmed:volume21lld:pubmed
pubmed-article:3744738pubmed:ownerNLMlld:pubmed
pubmed-article:3744738pubmed:authorsCompleteYlld:pubmed
pubmed-article:3744738pubmed:pagination631-6lld:pubmed
pubmed-article:3744738pubmed:dateRevised2009-11-11lld:pubmed
pubmed-article:3744738pubmed:meshHeadingpubmed-meshheading:3744738-...lld:pubmed
pubmed-article:3744738pubmed:meshHeadingpubmed-meshheading:3744738-...lld:pubmed
pubmed-article:3744738pubmed:meshHeadingpubmed-meshheading:3744738-...lld:pubmed
pubmed-article:3744738pubmed:meshHeadingpubmed-meshheading:3744738-...lld:pubmed
pubmed-article:3744738pubmed:meshHeadingpubmed-meshheading:3744738-...lld:pubmed
pubmed-article:3744738pubmed:meshHeadingpubmed-meshheading:3744738-...lld:pubmed
pubmed-article:3744738pubmed:meshHeadingpubmed-meshheading:3744738-...lld:pubmed
pubmed-article:3744738pubmed:meshHeadingpubmed-meshheading:3744738-...lld:pubmed
pubmed-article:3744738pubmed:meshHeadingpubmed-meshheading:3744738-...lld:pubmed
pubmed-article:3744738pubmed:meshHeadingpubmed-meshheading:3744738-...lld:pubmed
pubmed-article:3744738pubmed:year1986lld:pubmed
pubmed-article:3744738pubmed:articleTitleMeasurement of peripheral blood flow by thermodilution techniques.lld:pubmed
pubmed-article:3744738pubmed:publicationTypeJournal Articlelld:pubmed