Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:3689832rdf:typepubmed:Citationlld:pubmed
pubmed-article:3689832lifeskim:mentionsumls-concept:C0086418lld:lifeskim
pubmed-article:3689832lifeskim:mentionsumls-concept:C0030709lld:lifeskim
pubmed-article:3689832lifeskim:mentionsumls-concept:C0332120lld:lifeskim
pubmed-article:3689832pubmed:issue4-5lld:pubmed
pubmed-article:3689832pubmed:dateCreated1988-2-11lld:pubmed
pubmed-article:3689832pubmed:abstractTextWe have investigated how observers learn to classify compound Gabor signals as a function of their differentiating frequency components. Performance appears to be consistent with decision processes based upon the least squares minimum distance classifier (LSMDC) operating over a cartesian feature space consisting of the real (even) and imaginary (odd) components of the signals. The LSMDC model assumes observers form prototype signals, or adaptive filters, for each signal class in the learning phase, and classify as a function of their degree of match to each prototype. The underlying matching process can be modelled in terms of cross-correlation between prototype images and the input sample.lld:pubmed
pubmed-article:3689832pubmed:languageenglld:pubmed
pubmed-article:3689832pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:3689832pubmed:citationSubsetIMlld:pubmed
pubmed-article:3689832pubmed:statusMEDLINElld:pubmed
pubmed-article:3689832pubmed:issn0340-1200lld:pubmed
pubmed-article:3689832pubmed:authorpubmed-author:CaelliTTlld:pubmed
pubmed-article:3689832pubmed:authorpubmed-author:RentschlerIIlld:pubmed
pubmed-article:3689832pubmed:authorpubmed-author:ScheidlerWWlld:pubmed
pubmed-article:3689832pubmed:issnTypePrintlld:pubmed
pubmed-article:3689832pubmed:volume57lld:pubmed
pubmed-article:3689832pubmed:ownerNLMlld:pubmed
pubmed-article:3689832pubmed:authorsCompleteYlld:pubmed
pubmed-article:3689832pubmed:pagination233-40lld:pubmed
pubmed-article:3689832pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:3689832pubmed:meshHeadingpubmed-meshheading:3689832-...lld:pubmed
pubmed-article:3689832pubmed:meshHeadingpubmed-meshheading:3689832-...lld:pubmed
pubmed-article:3689832pubmed:meshHeadingpubmed-meshheading:3689832-...lld:pubmed
pubmed-article:3689832pubmed:meshHeadingpubmed-meshheading:3689832-...lld:pubmed
pubmed-article:3689832pubmed:meshHeadingpubmed-meshheading:3689832-...lld:pubmed
pubmed-article:3689832pubmed:meshHeadingpubmed-meshheading:3689832-...lld:pubmed
pubmed-article:3689832pubmed:meshHeadingpubmed-meshheading:3689832-...lld:pubmed
pubmed-article:3689832pubmed:year1987lld:pubmed
pubmed-article:3689832pubmed:articleTitleVisual pattern recognition in humans. I. Evidence for adaptive filtering.lld:pubmed
pubmed-article:3689832pubmed:affiliationInstitut für Medizinische Psychologie der Universität, München, Federal Republic of Germany.lld:pubmed
pubmed-article:3689832pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:3689832pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed