Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:3207777rdf:typepubmed:Citationlld:pubmed
pubmed-article:3207777lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:3207777lifeskim:mentionsumls-concept:C0027882lld:lifeskim
pubmed-article:3207777lifeskim:mentionsumls-concept:C1881065lld:lifeskim
pubmed-article:3207777lifeskim:mentionsumls-concept:C0012222lld:lifeskim
pubmed-article:3207777lifeskim:mentionsumls-concept:C0205132lld:lifeskim
pubmed-article:3207777pubmed:issue6lld:pubmed
pubmed-article:3207777pubmed:dateCreated1989-2-13lld:pubmed
pubmed-article:3207777pubmed:abstractTextThe diffusion models of neuronal activity are general yet conceptually simple and flexible enough to be useful in a variety of modeling problems. Unfortunately, even simple diffusion models lead to tedious numerical calculations. Consequently, the existing neural net models use characteristics of a single neuron taken from the "pre-diffusion" era of neural modeling. Simplistic elements of neural nets forbid to incorporate a single learning neuron structure into the net model. The above drawback cannot be overcome without the use of the adequate structure of the single neuron as an element of a net. A linear (not necessarily homogeneous) diffusion model of a single neuron is a good candidate for such a structure, it must, however, be simplified. In the paper the structure of the diffusion model of neuron is discussed and a linear homogeneous model with reflection is analyzed. For this model an approximation is presented, which is based on the approximation of the first passage time distribution of the Ornstein-Uhlenbeck process by the delayed (shifted) exponential distribution. The resulting model has a simple structure and has a prospective application in neural modeling and in analysis of neural nets.lld:pubmed
pubmed-article:3207777pubmed:languageenglld:pubmed
pubmed-article:3207777pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:3207777pubmed:citationSubsetIMlld:pubmed
pubmed-article:3207777pubmed:statusMEDLINElld:pubmed
pubmed-article:3207777pubmed:issn0340-1200lld:pubmed
pubmed-article:3207777pubmed:authorpubmed-author:DabrowskaDDlld:pubmed
pubmed-article:3207777pubmed:authorpubmed-author:PacutAAlld:pubmed
pubmed-article:3207777pubmed:issnTypePrintlld:pubmed
pubmed-article:3207777pubmed:volume59lld:pubmed
pubmed-article:3207777pubmed:ownerNLMlld:pubmed
pubmed-article:3207777pubmed:authorsCompleteYlld:pubmed
pubmed-article:3207777pubmed:pagination395-404lld:pubmed
pubmed-article:3207777pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:3207777pubmed:meshHeadingpubmed-meshheading:3207777-...lld:pubmed
pubmed-article:3207777pubmed:meshHeadingpubmed-meshheading:3207777-...lld:pubmed
pubmed-article:3207777pubmed:meshHeadingpubmed-meshheading:3207777-...lld:pubmed
pubmed-article:3207777pubmed:year1988lld:pubmed
pubmed-article:3207777pubmed:articleTitleDelayed-exponential approximation of a linear homogeneous diffusion model of neuron.lld:pubmed
pubmed-article:3207777pubmed:affiliationDepartment of Electrical and Computer Engineering, Oregon State University, Corvallis 97331.lld:pubmed
pubmed-article:3207777pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:3207777pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed