pubmed-article:2536039 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:2536039 | lifeskim:mentions | umls-concept:C0022646 | lld:lifeskim |
pubmed-article:2536039 | lifeskim:mentions | umls-concept:C0019932 | lld:lifeskim |
pubmed-article:2536039 | lifeskim:mentions | umls-concept:C1512199 | lld:lifeskim |
pubmed-article:2536039 | lifeskim:mentions | umls-concept:C0042397 | lld:lifeskim |
pubmed-article:2536039 | lifeskim:mentions | umls-concept:C0055363 | lld:lifeskim |
pubmed-article:2536039 | pubmed:issue | 1 | lld:pubmed |
pubmed-article:2536039 | pubmed:dateCreated | 1989-2-23 | lld:pubmed |
pubmed-article:2536039 | pubmed:abstractText | Mesangial cells are smooth muscle-like cells of the renal glomerulus which contract and produce prostaglandins in response to vasopressin and angiotensin. These responses serve to regulate the glomerular capillary filtering surface area. We have used the membrane potential-sensitive fluorescent dye bis-oxonol and the intracellular fluorescent calcium-sensitive probe Indo-1 to study the changes in membrane potential (Em) and intracellular free calcium concentration ([Ca2+]i) in cultured rat mesangial cells in response to vasoconstrictor hormones. Basal [Ca2+]i was 227 +/- 4 nM, and stimulation by maximal concentrations of either vasopressin or angiotensin resulted in a transient 4-6-fold rise. Resting membrane potential was 45.8 +/- 0.9 mV and vasoconstrictor hormones caused a depolarization of 14-18 mV. The following extracellular ion substitutions indicated that chloride efflux was the predominant ion flux responsible for depolarization: 1) depolarization persisted when sodium in the medium was substituted with N-methylglucamine; 2) substitution of medium sodium chloride with sodium gluconate, which enhances the gradient for chloride efflux, augmented vasoconstrictor-stimulated depolarization; 3) suspension of cells in potassium chloride medium resulted in depolarization, following which, stimulation by either vasopressin or angiotensin resulted in hyperpolarization; and 4) this hyperpolarization did not occur when potassium gluconate medium was used to depolarize the cells. The calcium ionophore ionomycin also resulted in membrane depolarization. However, prevention of the rise in [Ca2+]i by prior exposure to ionomycin in calcium-free medium or by loading mesangial cells with the intracellular calcium buffer BAPTA did not abrogate the depolarization response to vasoconstrictor hormones. This indicates that a rise in intracellular calcium is not necessary for depolarization. In contrast, prior depolarization of the cells using varying concentrations of KCl in the external medium, which dissipated the electrochemical gradient for chloride efflux, resulted in a corresponding prolongation of the transient calcium response to vasopressin and angiotensin. These findings indicate that angiotensin and vasopressin depolarize mesangial cells by activating chloride channels and that this activation can occur by both calcium-dependent and -independent mechanisms. In addition, activation of chloride channels with resulting depolarization may serve to modulate the calcium signal. | lld:pubmed |
pubmed-article:2536039 | pubmed:language | eng | lld:pubmed |
pubmed-article:2536039 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2536039 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:2536039 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2536039 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2536039 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2536039 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2536039 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2536039 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2536039 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2536039 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2536039 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2536039 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2536039 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2536039 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:2536039 | pubmed:month | Jan | lld:pubmed |
pubmed-article:2536039 | pubmed:issn | 0021-9541 | lld:pubmed |
pubmed-article:2536039 | pubmed:author | pubmed-author:SkoreckiK LKL | lld:pubmed |
pubmed-article:2536039 | pubmed:author | pubmed-author:KremerS GSG | lld:pubmed |
pubmed-article:2536039 | pubmed:author | pubmed-author:BreuerW VWV | lld:pubmed |
pubmed-article:2536039 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:2536039 | pubmed:volume | 138 | lld:pubmed |
pubmed-article:2536039 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:2536039 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:2536039 | pubmed:pagination | 97-105 | lld:pubmed |
pubmed-article:2536039 | pubmed:dateRevised | 2006-11-15 | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:meshHeading | pubmed-meshheading:2536039-... | lld:pubmed |
pubmed-article:2536039 | pubmed:year | 1989 | lld:pubmed |
pubmed-article:2536039 | pubmed:articleTitle | Vasoconstrictor hormones depolarize renal glomerular mesangial cells by activating chloride channels. | lld:pubmed |
pubmed-article:2536039 | pubmed:affiliation | Department of Medicine, University of Toronto, Canada. | lld:pubmed |
pubmed-article:2536039 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:2536039 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2536039 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2536039 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2536039 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2536039 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2536039 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2536039 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2536039 | lld:pubmed |