pubmed-article:2459608 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:2459608 | lifeskim:mentions | umls-concept:C0035820 | lld:lifeskim |
pubmed-article:2459608 | lifeskim:mentions | umls-concept:C2752508 | lld:lifeskim |
pubmed-article:2459608 | lifeskim:mentions | umls-concept:C0140080 | lld:lifeskim |
pubmed-article:2459608 | lifeskim:mentions | umls-concept:C1167322 | lld:lifeskim |
pubmed-article:2459608 | lifeskim:mentions | umls-concept:C0037083 | lld:lifeskim |
pubmed-article:2459608 | lifeskim:mentions | umls-concept:C0032214 | lld:lifeskim |
pubmed-article:2459608 | lifeskim:mentions | umls-concept:C1710082 | lld:lifeskim |
pubmed-article:2459608 | lifeskim:mentions | umls-concept:C0034780 | lld:lifeskim |
pubmed-article:2459608 | lifeskim:mentions | umls-concept:C0332120 | lld:lifeskim |
pubmed-article:2459608 | pubmed:issue | 9 | lld:pubmed |
pubmed-article:2459608 | pubmed:dateCreated | 1988-11-21 | lld:pubmed |
pubmed-article:2459608 | pubmed:abstractText | alpha IR-3 is a mouse monoclonal antibody that binds to an epitope on the human insulin-like growth factor I (IGF-I) receptor and inhibits [125I]IGF-I binding to this receptor on human skin fibroblasts (HSF) and Hep G2 human hepatoblastoma cells. Unlike the natural ligand (IGF-I), neither intact alpha IR-3 nor its monovalent Fab fragment stimulate aminoisobutyric acid (AIB) uptake in HSF, and both competitively antagonize IGF-I's ability to produce this effect. However, when HSF are incubated with alpha IR-3 or its Fab' fragment, subsequent exposure to anti-mouse immunoglobulin G (IgG) produces a potent stimulation of AIB uptake. Anti-Mouse IgG by itself does not effect AIB uptake. alpha IR-3 also antagonizes IGF-I's ability to stimulate glycogen synthesis in Hep G2 cells. As with AIB uptake in HSF, the combination of alpha IR-3 followed by anti-mouse IgG stimulates glycogen synthesis in Hep G2 cells to the same extent as that produced by IGF-I. The triggering of these two biological effects depends on the concentration of both alpha IR-3 and anti-mouse IgG. These results are consistent with the possibility that local aggregation or cross-linking of IGF-I receptors plays an important role in transmembrane signaling by this receptor. | lld:pubmed |
pubmed-article:2459608 | pubmed:language | eng | lld:pubmed |
pubmed-article:2459608 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2459608 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:2459608 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2459608 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2459608 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2459608 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2459608 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2459608 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2459608 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2459608 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:2459608 | pubmed:month | Sep | lld:pubmed |
pubmed-article:2459608 | pubmed:issn | 0888-8809 | lld:pubmed |
pubmed-article:2459608 | pubmed:author | pubmed-author:FlierJ SJS | lld:pubmed |
pubmed-article:2459608 | pubmed:author | pubmed-author:YoshinoHH | lld:pubmed |
pubmed-article:2459608 | pubmed:author | pubmed-author:MosesA CAC | lld:pubmed |
pubmed-article:2459608 | pubmed:author | pubmed-author:IkariNN | lld:pubmed |
pubmed-article:2459608 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:2459608 | pubmed:volume | 2 | lld:pubmed |
pubmed-article:2459608 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:2459608 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:2459608 | pubmed:pagination | 831-7 | lld:pubmed |
pubmed-article:2459608 | pubmed:dateRevised | 2009-11-19 | lld:pubmed |
pubmed-article:2459608 | pubmed:meshHeading | pubmed-meshheading:2459608-... | lld:pubmed |
pubmed-article:2459608 | pubmed:meshHeading | pubmed-meshheading:2459608-... | lld:pubmed |
pubmed-article:2459608 | pubmed:meshHeading | pubmed-meshheading:2459608-... | lld:pubmed |
pubmed-article:2459608 | pubmed:meshHeading | pubmed-meshheading:2459608-... | lld:pubmed |
pubmed-article:2459608 | pubmed:meshHeading | pubmed-meshheading:2459608-... | lld:pubmed |
pubmed-article:2459608 | pubmed:meshHeading | pubmed-meshheading:2459608-... | lld:pubmed |
pubmed-article:2459608 | pubmed:meshHeading | pubmed-meshheading:2459608-... | lld:pubmed |
pubmed-article:2459608 | pubmed:meshHeading | pubmed-meshheading:2459608-... | lld:pubmed |
pubmed-article:2459608 | pubmed:meshHeading | pubmed-meshheading:2459608-... | lld:pubmed |
pubmed-article:2459608 | pubmed:meshHeading | pubmed-meshheading:2459608-... | lld:pubmed |
pubmed-article:2459608 | pubmed:meshHeading | pubmed-meshheading:2459608-... | lld:pubmed |
pubmed-article:2459608 | pubmed:meshHeading | pubmed-meshheading:2459608-... | lld:pubmed |
pubmed-article:2459608 | pubmed:year | 1988 | lld:pubmed |
pubmed-article:2459608 | pubmed:articleTitle | Evidence that receptor aggregation may play a role in transmembrane signaling through the insulin-like growth factor-I receptor. | lld:pubmed |
pubmed-article:2459608 | pubmed:affiliation | Charles A. Dana Research Institute, Boston, Massachusetts. | lld:pubmed |
pubmed-article:2459608 | pubmed:publicationType | Journal Article | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2459608 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2459608 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2459608 | lld:pubmed |