pubmed-article:2399429 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:2399429 | lifeskim:mentions | umls-concept:C0681828 | lld:lifeskim |
pubmed-article:2399429 | lifeskim:mentions | umls-concept:C0205284 | lld:lifeskim |
pubmed-article:2399429 | lifeskim:mentions | umls-concept:C0440138 | lld:lifeskim |
pubmed-article:2399429 | pubmed:issue | 4 | lld:pubmed |
pubmed-article:2399429 | pubmed:dateCreated | 1990-10-18 | lld:pubmed |
pubmed-article:2399429 | pubmed:abstractText | One conventional and two high-Cu amalgams were tested for marginal microhardness after 2 months' corrosion in an 85 mM NaCl solution. Amalgams immersed in 200 mM phosphate buffer solution were used as controls. The microhardness tests were conducted on cross-sections of the amalgams 50 microns from the surface edges. The microstructure of the amalgams was studied in SEM and the amounts of Sn, Cu, Zn, Ag, and Hg dissolved in the solutions were analyzed with an atomic absorption spectrophotometer. For the amalgams immersed in the NaCl solution the depth of corrosion after 2 months was between 50 and 400 microns. The specimens immersed in the phosphate solution showed no signs of subsurface corrosion. The marginal microhardness of all the amalgams was reduced after corrosion in the NaCl solution. The greatest microhardness in both the uncorroded and corroded states was shown in the two high-Cu amalgams. The reduction in marginal microhardness after corrosion can probably be attributed mainly to degradation of the gamma-2 phase for the conventional amalgam and to degradation of the eta' phase for the two high-Cu amalgams. | lld:pubmed |
pubmed-article:2399429 | pubmed:language | eng | lld:pubmed |
pubmed-article:2399429 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2399429 | pubmed:citationSubset | D | lld:pubmed |
pubmed-article:2399429 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2399429 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2399429 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2399429 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2399429 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2399429 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2399429 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2399429 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2399429 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:2399429 | pubmed:month | Aug | lld:pubmed |
pubmed-article:2399429 | pubmed:issn | 0029-845X | lld:pubmed |
pubmed-article:2399429 | pubmed:author | pubmed-author:MobergL ELE | lld:pubmed |
pubmed-article:2399429 | pubmed:author | pubmed-author:PatsurakosAA | lld:pubmed |
pubmed-article:2399429 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:2399429 | pubmed:volume | 98 | lld:pubmed |
pubmed-article:2399429 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:2399429 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:2399429 | pubmed:pagination | 326-35 | lld:pubmed |
pubmed-article:2399429 | pubmed:dateRevised | 2008-11-21 | lld:pubmed |
pubmed-article:2399429 | pubmed:meshHeading | pubmed-meshheading:2399429-... | lld:pubmed |
pubmed-article:2399429 | pubmed:meshHeading | pubmed-meshheading:2399429-... | lld:pubmed |
pubmed-article:2399429 | pubmed:meshHeading | pubmed-meshheading:2399429-... | lld:pubmed |
pubmed-article:2399429 | pubmed:meshHeading | pubmed-meshheading:2399429-... | lld:pubmed |
pubmed-article:2399429 | pubmed:meshHeading | pubmed-meshheading:2399429-... | lld:pubmed |
pubmed-article:2399429 | pubmed:meshHeading | pubmed-meshheading:2399429-... | lld:pubmed |
pubmed-article:2399429 | pubmed:meshHeading | pubmed-meshheading:2399429-... | lld:pubmed |
pubmed-article:2399429 | pubmed:meshHeading | pubmed-meshheading:2399429-... | lld:pubmed |
pubmed-article:2399429 | pubmed:meshHeading | pubmed-meshheading:2399429-... | lld:pubmed |
pubmed-article:2399429 | pubmed:meshHeading | pubmed-meshheading:2399429-... | lld:pubmed |
pubmed-article:2399429 | pubmed:meshHeading | pubmed-meshheading:2399429-... | lld:pubmed |
pubmed-article:2399429 | pubmed:meshHeading | pubmed-meshheading:2399429-... | lld:pubmed |
pubmed-article:2399429 | pubmed:meshHeading | pubmed-meshheading:2399429-... | lld:pubmed |
pubmed-article:2399429 | pubmed:meshHeading | pubmed-meshheading:2399429-... | lld:pubmed |
pubmed-article:2399429 | pubmed:meshHeading | pubmed-meshheading:2399429-... | lld:pubmed |
pubmed-article:2399429 | pubmed:year | 1990 | lld:pubmed |
pubmed-article:2399429 | pubmed:articleTitle | Marginal microhardness of corroded amalgams: a comparative in vitro study. | lld:pubmed |
pubmed-article:2399429 | pubmed:affiliation | Department of Prosthodontics, Karolinska Institute, Stockholm, Sweden. | lld:pubmed |
pubmed-article:2399429 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:2399429 | pubmed:publicationType | Comparative Study | lld:pubmed |