Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:2230602rdf:typepubmed:Citationlld:pubmed
pubmed-article:2230602lifeskim:mentionsumls-concept:C0010395lld:lifeskim
pubmed-article:2230602lifeskim:mentionsumls-concept:C0004461lld:lifeskim
pubmed-article:2230602lifeskim:mentionsumls-concept:C0235169lld:lifeskim
pubmed-article:2230602lifeskim:mentionsumls-concept:C0441655lld:lifeskim
pubmed-article:2230602lifeskim:mentionsumls-concept:C0392747lld:lifeskim
pubmed-article:2230602lifeskim:mentionsumls-concept:C1705994lld:lifeskim
pubmed-article:2230602lifeskim:mentionsumls-concept:C0443172lld:lifeskim
pubmed-article:2230602lifeskim:mentionsumls-concept:C1513492lld:lifeskim
pubmed-article:2230602pubmed:issue5lld:pubmed
pubmed-article:2230602pubmed:dateCreated1990-12-10lld:pubmed
pubmed-article:2230602pubmed:abstractTextIt has been shown experimentally that the crustacean motor axon is supernormally excitable following a train of action potentials (Zucker 1974). Such a phenomenon can lead to recruitment of terminals which are unexcited at low rates of stimulation. Although currents underlying the crustacean motor axon have been characterized (Connor et al. 1977), it is not known whether this membrane model accounts for a supernormal period, what might cause superexcitability in this model, or how excitability might change during repetitive stimulation. In present study, it is demonstrated that the crustacean motor axon model does predict a supernormal period, that the supernormal period results from slow recovery from inactivation of the transient potassium, or A, current, and that supernormal excitability is enhanced by repetitive stimulation.lld:pubmed
pubmed-article:2230602pubmed:languageenglld:pubmed
pubmed-article:2230602pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2230602pubmed:citationSubsetIMlld:pubmed
pubmed-article:2230602pubmed:statusMEDLINElld:pubmed
pubmed-article:2230602pubmed:issn0303-6812lld:pubmed
pubmed-article:2230602pubmed:authorpubmed-author:StockbridgeNNlld:pubmed
pubmed-article:2230602pubmed:authorpubmed-author:YamoahNNlld:pubmed
pubmed-article:2230602pubmed:issnTypePrintlld:pubmed
pubmed-article:2230602pubmed:volume28lld:pubmed
pubmed-article:2230602pubmed:ownerNLMlld:pubmed
pubmed-article:2230602pubmed:authorsCompleteYlld:pubmed
pubmed-article:2230602pubmed:pagination487-99lld:pubmed
pubmed-article:2230602pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:2230602pubmed:meshHeadingpubmed-meshheading:2230602-...lld:pubmed
pubmed-article:2230602pubmed:meshHeadingpubmed-meshheading:2230602-...lld:pubmed
pubmed-article:2230602pubmed:meshHeadingpubmed-meshheading:2230602-...lld:pubmed
pubmed-article:2230602pubmed:meshHeadingpubmed-meshheading:2230602-...lld:pubmed
pubmed-article:2230602pubmed:meshHeadingpubmed-meshheading:2230602-...lld:pubmed
pubmed-article:2230602pubmed:meshHeadingpubmed-meshheading:2230602-...lld:pubmed
pubmed-article:2230602pubmed:meshHeadingpubmed-meshheading:2230602-...lld:pubmed
pubmed-article:2230602pubmed:meshHeadingpubmed-meshheading:2230602-...lld:pubmed
pubmed-article:2230602pubmed:year1990lld:pubmed
pubmed-article:2230602pubmed:articleTitleExcitability changes in the crustacean motor axons following activity.lld:pubmed
pubmed-article:2230602pubmed:affiliationDepartment of Surgery, University of Alberta, Edmonton, Canada.lld:pubmed
pubmed-article:2230602pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:2230602pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed