pubmed-article:2210075 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:2210075 | lifeskim:mentions | umls-concept:C0016030 | lld:lifeskim |
pubmed-article:2210075 | lifeskim:mentions | umls-concept:C0178719 | lld:lifeskim |
pubmed-article:2210075 | lifeskim:mentions | umls-concept:C0013081 | lld:lifeskim |
pubmed-article:2210075 | lifeskim:mentions | umls-concept:C0017725 | lld:lifeskim |
pubmed-article:2210075 | lifeskim:mentions | umls-concept:C1159521 | lld:lifeskim |
pubmed-article:2210075 | lifeskim:mentions | umls-concept:C2349209 | lld:lifeskim |
pubmed-article:2210075 | lifeskim:mentions | umls-concept:C1549649 | lld:lifeskim |
pubmed-article:2210075 | lifeskim:mentions | umls-concept:C0332120 | lld:lifeskim |
pubmed-article:2210075 | pubmed:issue | 10 | lld:pubmed |
pubmed-article:2210075 | pubmed:dateCreated | 1990-11-21 | lld:pubmed |
pubmed-article:2210075 | pubmed:abstractText | Measurements of initial glucose entry rate and intracellular glucose concentration in cultured cells are difficult because of rapid transport relative to intracellular volume and a substantial extracellular space from which glucose cannot be completely removed by quick exchanges of medium. In 3T3-L1 cells, we obtained good estimates of initial entry of [14C]methylglucose and D-[14C]glucose with 1) L-[3H]glucose as an extracellular marker together with the [14C]glucose or [14C]methylglucose in the substrate mixture, 2) sampling times as short as 2 s, 3) ice-cold phloretin-containing medium to stop uptake and rinse away the extracellular label, and 4) nonlinear regression of time courses. Methylglucose equilibrated in two phases--the first with a half-time of 1.7 s and the second with a half-time of 23 s; it eventually equilibrated in an intracellular space of 8 microliters/mg protein. Entry of glucose remained almost linear for 10 s, making its transport kinetics easier to study (Km = 5.7 mM, Vmax = 590 nmol.s-1.ml-1 cell water). Steady-state intracellular glucose concentration was 75-90% of extracellular glucose concentration. Cells grown in a high-glucose medium (24 mM) exhibited a 67% reduction of glucose-transport activity and a 50% reduction of steady-state ratio of intracellular glucose to extracellular glucose. | lld:pubmed |
pubmed-article:2210075 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2210075 | pubmed:language | eng | lld:pubmed |
pubmed-article:2210075 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2210075 | pubmed:citationSubset | AIM | lld:pubmed |
pubmed-article:2210075 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2210075 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2210075 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2210075 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2210075 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:2210075 | pubmed:month | Oct | lld:pubmed |
pubmed-article:2210075 | pubmed:issn | 0012-1797 | lld:pubmed |
pubmed-article:2210075 | pubmed:author | pubmed-author:RegenD MDM | lld:pubmed |
pubmed-article:2210075 | pubmed:author | pubmed-author:WhitesellR... | lld:pubmed |
pubmed-article:2210075 | pubmed:author | pubmed-author:PelletierDD | lld:pubmed |
pubmed-article:2210075 | pubmed:author | pubmed-author:AbumradN ANA | lld:pubmed |
pubmed-article:2210075 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:2210075 | pubmed:volume | 39 | lld:pubmed |
pubmed-article:2210075 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:2210075 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:2210075 | pubmed:pagination | 1228-34 | lld:pubmed |
pubmed-article:2210075 | pubmed:dateRevised | 2007-11-14 | lld:pubmed |
pubmed-article:2210075 | pubmed:meshHeading | pubmed-meshheading:2210075-... | lld:pubmed |
pubmed-article:2210075 | pubmed:meshHeading | pubmed-meshheading:2210075-... | lld:pubmed |
pubmed-article:2210075 | pubmed:meshHeading | pubmed-meshheading:2210075-... | lld:pubmed |
pubmed-article:2210075 | pubmed:meshHeading | pubmed-meshheading:2210075-... | lld:pubmed |
pubmed-article:2210075 | pubmed:meshHeading | pubmed-meshheading:2210075-... | lld:pubmed |
pubmed-article:2210075 | pubmed:meshHeading | pubmed-meshheading:2210075-... | lld:pubmed |
pubmed-article:2210075 | pubmed:meshHeading | pubmed-meshheading:2210075-... | lld:pubmed |
pubmed-article:2210075 | pubmed:meshHeading | pubmed-meshheading:2210075-... | lld:pubmed |
pubmed-article:2210075 | pubmed:meshHeading | pubmed-meshheading:2210075-... | lld:pubmed |
pubmed-article:2210075 | pubmed:meshHeading | pubmed-meshheading:2210075-... | lld:pubmed |
pubmed-article:2210075 | pubmed:meshHeading | pubmed-meshheading:2210075-... | lld:pubmed |
pubmed-article:2210075 | pubmed:year | 1990 | lld:pubmed |
pubmed-article:2210075 | pubmed:articleTitle | Evidence that downregulation of hexose transport limits intracellular glucose in 3T3-L1 fibroblasts. | lld:pubmed |
pubmed-article:2210075 | pubmed:affiliation | Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232. | lld:pubmed |
pubmed-article:2210075 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:2210075 | pubmed:publicationType | Research Support, U.S. Gov't, P.H.S. | lld:pubmed |
pubmed-article:2210075 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |