Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:2205603rdf:typepubmed:Citationlld:pubmed
pubmed-article:2205603lifeskim:mentionsumls-concept:C0011627lld:lifeskim
pubmed-article:2205603lifeskim:mentionsumls-concept:C0237881lld:lifeskim
pubmed-article:2205603lifeskim:mentionsumls-concept:C0206163lld:lifeskim
pubmed-article:2205603lifeskim:mentionsumls-concept:C0750502lld:lifeskim
pubmed-article:2205603lifeskim:mentionsumls-concept:C0871935lld:lifeskim
pubmed-article:2205603pubmed:issue7lld:pubmed
pubmed-article:2205603pubmed:dateCreated1990-10-19lld:pubmed
pubmed-article:2205603pubmed:abstractTextClassic mathematical methods are frequently not suitable for the investigation of complex "natural" shapes, that cannot be approximated by geometric structures. A theory developed by Mandelbrot has made it possible to analyse such "fractals". Many biological and medical shapes could be identified as fractal. These results suggest fractal structures for some dermatological lesions. This is particularly true for skin lesions related to the vascular system (e.g., livedo racemosa, spider naevus). Furthermore, computer simulation of pathogenetic mechanisms can demonstrate that the lesions of a skin disease are fractal in nature. This method can be applied to skin tumours with horizontal cell growth (e.g., carcinoma and melanoma in situ) and to the architecture of spider naevus.lld:pubmed
pubmed-article:2205603pubmed:languagegerlld:pubmed
pubmed-article:2205603pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2205603pubmed:citationSubsetIMlld:pubmed
pubmed-article:2205603pubmed:statusMEDLINElld:pubmed
pubmed-article:2205603pubmed:monthJullld:pubmed
pubmed-article:2205603pubmed:issn0017-8470lld:pubmed
pubmed-article:2205603pubmed:authorpubmed-author:HolzmannHHlld:pubmed
pubmed-article:2205603pubmed:authorpubmed-author:MarschW CWClld:pubmed
pubmed-article:2205603pubmed:authorpubmed-author:GroebeGGlld:pubmed
pubmed-article:2205603pubmed:issnTypePrintlld:pubmed
pubmed-article:2205603pubmed:volume41lld:pubmed
pubmed-article:2205603pubmed:ownerNLMlld:pubmed
pubmed-article:2205603pubmed:authorsCompleteYlld:pubmed
pubmed-article:2205603pubmed:pagination388-91lld:pubmed
pubmed-article:2205603pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:2205603pubmed:meshHeadingpubmed-meshheading:2205603-...lld:pubmed
pubmed-article:2205603pubmed:meshHeadingpubmed-meshheading:2205603-...lld:pubmed
pubmed-article:2205603pubmed:meshHeadingpubmed-meshheading:2205603-...lld:pubmed
pubmed-article:2205603pubmed:meshHeadingpubmed-meshheading:2205603-...lld:pubmed
pubmed-article:2205603pubmed:meshHeadingpubmed-meshheading:2205603-...lld:pubmed
pubmed-article:2205603pubmed:meshHeadingpubmed-meshheading:2205603-...lld:pubmed
pubmed-article:2205603pubmed:year1990lld:pubmed
pubmed-article:2205603pubmed:articleTitle[The fractals theory and its significance for dermatology].lld:pubmed
pubmed-article:2205603pubmed:affiliationZentrum der Dermatologie und Venerologie, Abteilung I, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main.lld:pubmed
pubmed-article:2205603pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:2205603pubmed:publicationTypeEnglish Abstractlld:pubmed
pubmed-article:2205603pubmed:publicationTypeReviewlld:pubmed