Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:2184122rdf:typepubmed:Citationlld:pubmed
pubmed-article:2184122lifeskim:mentionsumls-concept:C0031809lld:lifeskim
pubmed-article:2184122lifeskim:mentionsumls-concept:C0554756lld:lifeskim
pubmed-article:2184122lifeskim:mentionsumls-concept:C0678226lld:lifeskim
pubmed-article:2184122lifeskim:mentionsumls-concept:C0439742lld:lifeskim
pubmed-article:2184122lifeskim:mentionsumls-concept:C0599946lld:lifeskim
pubmed-article:2184122lifeskim:mentionsumls-concept:C1947910lld:lifeskim
pubmed-article:2184122lifeskim:mentionsumls-concept:C0242484lld:lifeskim
pubmed-article:2184122lifeskim:mentionsumls-concept:C0443131lld:lifeskim
pubmed-article:2184122pubmed:issue3lld:pubmed
pubmed-article:2184122pubmed:dateCreated1990-5-25lld:pubmed
pubmed-article:2184122pubmed:abstractTextAll engineering measurements are subject to inaccurate and imprecise estimates, including the estimate of blood flow velocity. An assessment of specific error sources can minimize such uncertainties. Frequency-dependent attenuation and Rayleigh scattering are significant error sources for pulsed Doppler ultrasound because the transmitted ultrasonic signal has a finite width spectrum. The former causes a frequency downshift and the latter a frequency upshift, both of which are independent of the actual Doppler frequency shift. This communication evaluates these error sources through computer stimulation and compares the computed error to experimental data.lld:pubmed
pubmed-article:2184122pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2184122pubmed:languageenglld:pubmed
pubmed-article:2184122pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2184122pubmed:citationSubsetIMlld:pubmed
pubmed-article:2184122pubmed:statusMEDLINElld:pubmed
pubmed-article:2184122pubmed:monthMarlld:pubmed
pubmed-article:2184122pubmed:issn0018-9294lld:pubmed
pubmed-article:2184122pubmed:authorpubmed-author:O'BrienW...lld:pubmed
pubmed-article:2184122pubmed:authorpubmed-author:EmbreeP MPMlld:pubmed
pubmed-article:2184122pubmed:issnTypePrintlld:pubmed
pubmed-article:2184122pubmed:volume37lld:pubmed
pubmed-article:2184122pubmed:ownerNLMlld:pubmed
pubmed-article:2184122pubmed:authorsCompleteYlld:pubmed
pubmed-article:2184122pubmed:pagination322-6lld:pubmed
pubmed-article:2184122pubmed:dateRevised2009-11-11lld:pubmed
pubmed-article:2184122pubmed:meshHeadingpubmed-meshheading:2184122-...lld:pubmed
pubmed-article:2184122pubmed:meshHeadingpubmed-meshheading:2184122-...lld:pubmed
pubmed-article:2184122pubmed:meshHeadingpubmed-meshheading:2184122-...lld:pubmed
pubmed-article:2184122pubmed:meshHeadingpubmed-meshheading:2184122-...lld:pubmed
pubmed-article:2184122pubmed:meshHeadingpubmed-meshheading:2184122-...lld:pubmed
pubmed-article:2184122pubmed:year1990lld:pubmed
pubmed-article:2184122pubmed:articleTitlePulsed Doppler accuracy assessment due to frequency-dependent attenuation and Rayleigh scattering error sources.lld:pubmed
pubmed-article:2184122pubmed:affiliationDepartment of Electrical and Computer Engineering, University of Illinois, Urbana 61801.lld:pubmed
pubmed-article:2184122pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:2184122pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed
pubmed-article:2184122pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed