pubmed-article:21611650 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:21611650 | lifeskim:mentions | umls-concept:C0025663 | lld:lifeskim |
pubmed-article:21611650 | lifeskim:mentions | umls-concept:C1511790 | lld:lifeskim |
pubmed-article:21611650 | lifeskim:mentions | umls-concept:C0678594 | lld:lifeskim |
pubmed-article:21611650 | lifeskim:mentions | umls-concept:C0936012 | lld:lifeskim |
pubmed-article:21611650 | lifeskim:mentions | umls-concept:C1522492 | lld:lifeskim |
pubmed-article:21611650 | lifeskim:mentions | umls-concept:C0444498 | lld:lifeskim |
pubmed-article:21611650 | lifeskim:mentions | umls-concept:C1705938 | lld:lifeskim |
pubmed-article:21611650 | lifeskim:mentions | umls-concept:C1527178 | lld:lifeskim |
pubmed-article:21611650 | lifeskim:mentions | umls-concept:C2347109 | lld:lifeskim |
pubmed-article:21611650 | pubmed:issue | 13 | lld:pubmed |
pubmed-article:21611650 | pubmed:dateCreated | 2011-6-15 | lld:pubmed |
pubmed-article:21611650 | pubmed:abstractText | A new approach for the detection of Hg(2+) is reported based on color changes from which gold nanoparticles (Au NPs) are surrounded by a layer of HgS quantum dots to form in situ Au@HgS core-shell nanostructures. The surface plasmon resonance (SPR) absorption of the gold core was changed due to a shell layer of HgS formed on the surface of the Au NPs, which brings the colour change of the aqueous solution. Therefore, Hg(2+) can be recognized by visualizing the colour change of the Au@HgS core-shell nanostructures, and can be detected quantitatively by measurement of the UV-vis spectra. Some effects on the detection of Hg(2+) were investigated in detail. This method was used to detect Hg(2+) with excellent selectivity and high sensitivity. In our method, the lowest detected concentrations for mercury ions were 5.0 × 10(-6) M observed by the naked eye and 0.486 nM as measured by UV-vis spectra. At the range from 8.0 × 10(-5) to 1.0 × 10(-8) M of Hg(2+), this method was shown to have a good linear relationship. | lld:pubmed |
pubmed-article:21611650 | pubmed:language | eng | lld:pubmed |
pubmed-article:21611650 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21611650 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:21611650 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21611650 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21611650 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21611650 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21611650 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21611650 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21611650 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21611650 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:21611650 | pubmed:month | Jul | lld:pubmed |
pubmed-article:21611650 | pubmed:issn | 1364-5528 | lld:pubmed |
pubmed-article:21611650 | pubmed:author | pubmed-author:WangHaiyanH | lld:pubmed |
pubmed-article:21611650 | pubmed:author | pubmed-author:WuAiguoA | lld:pubmed |
pubmed-article:21611650 | pubmed:author | pubmed-author:ZhangFuqiangF | lld:pubmed |
pubmed-article:21611650 | pubmed:author | pubmed-author:CuiYangY | lld:pubmed |
pubmed-article:21611650 | pubmed:author | pubmed-author:ZengLeyongL | lld:pubmed |
pubmed-article:21611650 | pubmed:author | pubmed-author:XinJunweiJ | lld:pubmed |
pubmed-article:21611650 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:21611650 | pubmed:day | 7 | lld:pubmed |
pubmed-article:21611650 | pubmed:volume | 136 | lld:pubmed |
pubmed-article:21611650 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:21611650 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:21611650 | pubmed:pagination | 2825-30 | lld:pubmed |
pubmed-article:21611650 | pubmed:meshHeading | pubmed-meshheading:21611650... | lld:pubmed |
pubmed-article:21611650 | pubmed:meshHeading | pubmed-meshheading:21611650... | lld:pubmed |
pubmed-article:21611650 | pubmed:meshHeading | pubmed-meshheading:21611650... | lld:pubmed |
pubmed-article:21611650 | pubmed:meshHeading | pubmed-meshheading:21611650... | lld:pubmed |
pubmed-article:21611650 | pubmed:meshHeading | pubmed-meshheading:21611650... | lld:pubmed |
pubmed-article:21611650 | pubmed:meshHeading | pubmed-meshheading:21611650... | lld:pubmed |
pubmed-article:21611650 | pubmed:meshHeading | pubmed-meshheading:21611650... | lld:pubmed |
pubmed-article:21611650 | pubmed:meshHeading | pubmed-meshheading:21611650... | lld:pubmed |
pubmed-article:21611650 | pubmed:meshHeading | pubmed-meshheading:21611650... | lld:pubmed |
pubmed-article:21611650 | pubmed:meshHeading | pubmed-meshheading:21611650... | lld:pubmed |
pubmed-article:21611650 | pubmed:year | 2011 | lld:pubmed |
pubmed-article:21611650 | pubmed:articleTitle | A one-step colorimetric method of analysis detection of Hg2+ based on an in situ formation of Au@HgS core-shell structures. | lld:pubmed |
pubmed-article:21611650 | pubmed:affiliation | Anhui Key Laboratory of Chemo-biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China. | lld:pubmed |
pubmed-article:21611650 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:21611650 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |