Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21545085rdf:typepubmed:Citationlld:pubmed
pubmed-article:21545085lifeskim:mentionsumls-concept:C0023675lld:lifeskim
pubmed-article:21545085lifeskim:mentionsumls-concept:C0037605lld:lifeskim
pubmed-article:21545085lifeskim:mentionsumls-concept:C0699784lld:lifeskim
pubmed-article:21545085pubmed:issue12lld:pubmed
pubmed-article:21545085pubmed:dateCreated2011-6-13lld:pubmed
pubmed-article:21545085pubmed:abstractTextThe solar energy demand (SED) of the extraction of 232 atmospheric, biotic, fossil, land, metal, mineral, nuclear, and water resources was quantified and compared with other energy- and exergy-based indicators. SED represents the direct and indirect solar energy required by a product or service during its life cycle. SED scores were calculated for 3865 processes, as implemented in the Ecoinvent database, version 2.1. The results showed that nonrenewable resources, and in particular minerals, formed the dominant contribution to SED. This large share is due to the indirect solar energy required to produce these resource inputs. Compared with other energy- and exergy-based indicators, SED assigns higher impact factors to minerals and metals and smaller impact factors to fossil energetic resources, land use, and nuclear energy. The highest differences were observed for biobased and renewable energy generation processes, whose relative contribution of renewable resources such as water, biomass, and land occupation was much lower in SED than in energy- and exergy-based indicators.lld:pubmed
pubmed-article:21545085pubmed:languageenglld:pubmed
pubmed-article:21545085pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21545085pubmed:citationSubsetIMlld:pubmed
pubmed-article:21545085pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21545085pubmed:statusMEDLINElld:pubmed
pubmed-article:21545085pubmed:monthJunlld:pubmed
pubmed-article:21545085pubmed:issn1520-5851lld:pubmed
pubmed-article:21545085pubmed:authorpubmed-author:BastianoniSim...lld:pubmed
pubmed-article:21545085pubmed:authorpubmed-author:HuijbregtsMar...lld:pubmed
pubmed-article:21545085pubmed:authorpubmed-author:HellwegStefan...lld:pubmed
pubmed-article:21545085pubmed:authorpubmed-author:RuganiBenedet...lld:pubmed
pubmed-article:21545085pubmed:authorpubmed-author:MutelChristop...lld:pubmed
pubmed-article:21545085pubmed:issnTypeElectroniclld:pubmed
pubmed-article:21545085pubmed:day15lld:pubmed
pubmed-article:21545085pubmed:volume45lld:pubmed
pubmed-article:21545085pubmed:ownerNLMlld:pubmed
pubmed-article:21545085pubmed:authorsCompleteYlld:pubmed
pubmed-article:21545085pubmed:pagination5426-33lld:pubmed
pubmed-article:21545085pubmed:meshHeadingpubmed-meshheading:21545085...lld:pubmed
pubmed-article:21545085pubmed:meshHeadingpubmed-meshheading:21545085...lld:pubmed
pubmed-article:21545085pubmed:meshHeadingpubmed-meshheading:21545085...lld:pubmed
pubmed-article:21545085pubmed:meshHeadingpubmed-meshheading:21545085...lld:pubmed
pubmed-article:21545085pubmed:meshHeadingpubmed-meshheading:21545085...lld:pubmed
pubmed-article:21545085pubmed:year2011lld:pubmed
pubmed-article:21545085pubmed:articleTitleSolar energy demand (SED) of commodity life cycles.lld:pubmed
pubmed-article:21545085pubmed:affiliationDepartment of Chemistry, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy. benedetto.rugani@tudor.lulld:pubmed
pubmed-article:21545085pubmed:publicationTypeJournal Articlelld:pubmed