Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21529085rdf:typepubmed:Citationlld:pubmed
pubmed-article:21529085lifeskim:mentionsumls-concept:C0026339lld:lifeskim
pubmed-article:21529085lifeskim:mentionsumls-concept:C0011923lld:lifeskim
pubmed-article:21529085lifeskim:mentionsumls-concept:C0025914lld:lifeskim
pubmed-article:21529085lifeskim:mentionsumls-concept:C0026809lld:lifeskim
pubmed-article:21529085lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:21529085lifeskim:mentionsumls-concept:C0025663lld:lifeskim
pubmed-article:21529085lifeskim:mentionsumls-concept:C0162404lld:lifeskim
pubmed-article:21529085lifeskim:mentionsumls-concept:C0524865lld:lifeskim
pubmed-article:21529085lifeskim:mentionsumls-concept:C2348867lld:lifeskim
pubmed-article:21529085pubmed:issue4lld:pubmed
pubmed-article:21529085pubmed:dateCreated2011-5-2lld:pubmed
pubmed-article:21529085pubmed:abstractTextGenerally, the performance of tomographic bioluminescence imaging is dependent on several factors, such as regularization parameters and initial guess of source distribution. In this paper, a global-inexact-Newton based reconstruction method, which is regularized by a dynamic sparse term, is presented for tomographic reconstruction. The proposed method can enhance higher imaging reliability and efficiency. In vivo mouse experimental reconstructions were performed to validate the proposed method. Reconstruction comparisons of the proposed method with other methods demonstrate the applicability on an entire region. Moreover, the reliable performance on a wide range of regularization parameters and initial unknown values were also investigated. Based on the in vivo experiment and a mouse atlas, the tolerance for optical property mismatch was evaluated with optical overestimation and underestimation. Additionally, the reconstruction efficiency was also investigated with different sizes of mouse grids. We showed that this method was reliable for tomographic bioluminescence imaging in practical mouse experimental applications.lld:pubmed
pubmed-article:21529085pubmed:languageenglld:pubmed
pubmed-article:21529085pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21529085pubmed:citationSubsetIMlld:pubmed
pubmed-article:21529085pubmed:statusMEDLINElld:pubmed
pubmed-article:21529085pubmed:monthAprlld:pubmed
pubmed-article:21529085pubmed:issn1560-2281lld:pubmed
pubmed-article:21529085pubmed:authorpubmed-author:PANS CSClld:pubmed
pubmed-article:21529085pubmed:authorpubmed-author:WuPingPlld:pubmed
pubmed-article:21529085pubmed:authorpubmed-author:YangXinXlld:pubmed
pubmed-article:21529085pubmed:authorpubmed-author:HanDongDlld:pubmed
pubmed-article:21529085pubmed:authorpubmed-author:TianJieJlld:pubmed
pubmed-article:21529085pubmed:authorpubmed-author:QinChenghuClld:pubmed
pubmed-article:21529085pubmed:authorpubmed-author:ZhuShoupingSlld:pubmed
pubmed-article:21529085pubmed:issnTypeElectroniclld:pubmed
pubmed-article:21529085pubmed:volume16lld:pubmed
pubmed-article:21529085pubmed:ownerNLMlld:pubmed
pubmed-article:21529085pubmed:authorsCompleteYlld:pubmed
pubmed-article:21529085pubmed:pagination046016lld:pubmed
pubmed-article:21529085pubmed:meshHeadingpubmed-meshheading:21529085...lld:pubmed
pubmed-article:21529085pubmed:meshHeadingpubmed-meshheading:21529085...lld:pubmed
pubmed-article:21529085pubmed:meshHeadingpubmed-meshheading:21529085...lld:pubmed
pubmed-article:21529085pubmed:meshHeadingpubmed-meshheading:21529085...lld:pubmed
pubmed-article:21529085pubmed:meshHeadingpubmed-meshheading:21529085...lld:pubmed
pubmed-article:21529085pubmed:meshHeadingpubmed-meshheading:21529085...lld:pubmed
pubmed-article:21529085pubmed:meshHeadingpubmed-meshheading:21529085...lld:pubmed
pubmed-article:21529085pubmed:meshHeadingpubmed-meshheading:21529085...lld:pubmed
pubmed-article:21529085pubmed:meshHeadingpubmed-meshheading:21529085...lld:pubmed
pubmed-article:21529085pubmed:meshHeadingpubmed-meshheading:21529085...lld:pubmed
pubmed-article:21529085pubmed:year2011lld:pubmed
pubmed-article:21529085pubmed:articleTitleTomographic bioluminescence imaging reconstruction via a dynamically sparse regularized global method in mouse models.lld:pubmed
pubmed-article:21529085pubmed:affiliationChinese Academy of Sciences, Medical Image Processing Group, Institute of Automation, Beijing 100190, China.lld:pubmed
pubmed-article:21529085pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:21529085pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed