Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21525642rdf:typepubmed:Citationlld:pubmed
pubmed-article:21525642lifeskim:mentionsumls-concept:C0033684lld:lifeskim
pubmed-article:21525642lifeskim:mentionsumls-concept:C0178602lld:lifeskim
pubmed-article:21525642lifeskim:mentionsumls-concept:C1704410lld:lifeskim
pubmed-article:21525642lifeskim:mentionsumls-concept:C1378554lld:lifeskim
pubmed-article:21525642lifeskim:mentionsumls-concept:C1704419lld:lifeskim
pubmed-article:21525642pubmed:issuePt 3lld:pubmed
pubmed-article:21525642pubmed:dateCreated2011-4-28lld:pubmed
pubmed-article:21525642pubmed:abstractTextThe rate of radiation damage to macromolecular crystals at both room temperature and 100 K has previously been shown to be reduced by the use of certain radical scavengers. Here the effects of sodium nitrate, an electron scavenger, are investigated at 100 K. For sodium nitrate at a concentration of 0.5 M in chicken egg-white lysozyme crystals, the dose tolerance is increased by a factor of two as judged from the global damage parameters, and no specific structural damage to the disulfide bonds is seen until the dose is greatly in excess (more than a factor of five) of the value at which damage appears in electron density maps derived from a scavenger-free crystal. In the electron density maps, ordered nitrate ions adjacent to the disulfide bonds are seen to lose an O atom, and appear to protect the disulfide bonds. In addition, results reinforcing previous reports on the effectiveness of ascorbate are presented. The mechanisms of action of both scavengers in the crystalline environment are elucidated.lld:pubmed
pubmed-article:21525642pubmed:languageenglld:pubmed
pubmed-article:21525642pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21525642pubmed:citationSubsetIMlld:pubmed
pubmed-article:21525642pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21525642pubmed:statusMEDLINElld:pubmed
pubmed-article:21525642pubmed:monthMaylld:pubmed
pubmed-article:21525642pubmed:issn1600-5775lld:pubmed
pubmed-article:21525642pubmed:authorpubmed-author:CarmichaelIan...lld:pubmed
pubmed-article:21525642pubmed:authorpubmed-author:GarmanElspeth...lld:pubmed
pubmed-article:21525642pubmed:authorpubmed-author:De la...lld:pubmed
pubmed-article:21525642pubmed:issnTypeElectroniclld:pubmed
pubmed-article:21525642pubmed:volume18lld:pubmed
pubmed-article:21525642pubmed:ownerNLMlld:pubmed
pubmed-article:21525642pubmed:authorsCompleteYlld:pubmed
pubmed-article:21525642pubmed:pagination346-57lld:pubmed
pubmed-article:21525642pubmed:meshHeadingpubmed-meshheading:21525642...lld:pubmed
pubmed-article:21525642pubmed:meshHeadingpubmed-meshheading:21525642...lld:pubmed
pubmed-article:21525642pubmed:meshHeadingpubmed-meshheading:21525642...lld:pubmed
pubmed-article:21525642pubmed:meshHeadingpubmed-meshheading:21525642...lld:pubmed
pubmed-article:21525642pubmed:year2011lld:pubmed
pubmed-article:21525642pubmed:articleTitleEffective scavenging at cryotemperatures: further increasing the dose tolerance of protein crystals.lld:pubmed
pubmed-article:21525642pubmed:affiliationLaboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.lld:pubmed
pubmed-article:21525642pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:21525642pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed
pubmed-article:21525642pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed