pubmed-article:21521467 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:21521467 | lifeskim:mentions | umls-concept:C0021289 | lld:lifeskim |
pubmed-article:21521467 | lifeskim:mentions | umls-concept:C0237798 | lld:lifeskim |
pubmed-article:21521467 | lifeskim:mentions | umls-concept:C1135183 | lld:lifeskim |
pubmed-article:21521467 | lifeskim:mentions | umls-concept:C0038952 | lld:lifeskim |
pubmed-article:21521467 | lifeskim:mentions | umls-concept:C0332206 | lld:lifeskim |
pubmed-article:21521467 | lifeskim:mentions | umls-concept:C2349975 | lld:lifeskim |
pubmed-article:21521467 | pubmed:issue | 5 | lld:pubmed |
pubmed-article:21521467 | pubmed:dateCreated | 2011-4-27 | lld:pubmed |
pubmed-article:21521467 | pubmed:abstractText | The widespread clinical implementation of alloislet transplantation as therapy for type 1 diabetes has been hindered by the lack of suitable islet donors. Pig-to-human islet xenotransplantation is one strategy with potential to alleviate this shortage. Long-term survival of porcine islets has been achieved using CD154-specific antibodies to interrupt the CD40/CD154 costimulation pathway; however, CD154-specific antibodies seem unlikely candidates for clinical translation. An alternative strategy for CD40/CD154 pathway interruption is use of CD40-specific antibodies. Herein, we evaluate the ability of a chimeric CD40-specific monoclonal antibody (Chi220) to protect islet xenografts. Neonatal porcine islets (~50,000 IEQ/kg) were transplanted intraportally into pancreatectomized diabetic macaques. Immunosuppression consisted of induction therapy with Chi220 and the IL-2 receptor-specific antibody basiliximab, and maintenance therapy with sirolimus and the B7-specific fusion protein belatacept. Chi220 effectively promoted xenoislet engraftment and survival, with five of six treated recipients achieving insulin-independent normoglycemia (median rejection-free survival 59 days; mean 90.8 days, maximum 203 days). No thromboembolic phenomena were observed. CD40 represents a promising alternative to CD154 as a therapeutic target, and the efficacy of CD40-specific antibodies in islet xenotransplantation warrants further investigation. | lld:pubmed |
pubmed-article:21521467 | pubmed:language | eng | lld:pubmed |
pubmed-article:21521467 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21521467 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:21521467 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21521467 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21521467 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21521467 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21521467 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21521467 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21521467 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21521467 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21521467 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:21521467 | pubmed:month | May | lld:pubmed |
pubmed-article:21521467 | pubmed:issn | 1600-6143 | lld:pubmed |
pubmed-article:21521467 | pubmed:author | pubmed-author:ThompsonPP | lld:pubmed |
pubmed-article:21521467 | pubmed:author | pubmed-author:PearsonTT | lld:pubmed |
pubmed-article:21521467 | pubmed:author | pubmed-author:SongMM | lld:pubmed |
pubmed-article:21521467 | pubmed:author | pubmed-author:RussellMM | lld:pubmed |
pubmed-article:21521467 | pubmed:author | pubmed-author:CampTT | lld:pubmed |
pubmed-article:21521467 | pubmed:author | pubmed-author:LarsenC PCP | lld:pubmed |
pubmed-article:21521467 | pubmed:author | pubmed-author:KirkA DAD | lld:pubmed |
pubmed-article:21521467 | pubmed:author | pubmed-author:JiangWW | lld:pubmed |
pubmed-article:21521467 | pubmed:author | pubmed-author:RajotteRR | lld:pubmed |
pubmed-article:21521467 | pubmed:author | pubmed-author:StrobertEE | lld:pubmed |
pubmed-article:21521467 | pubmed:author | pubmed-author:KorbuttGG | lld:pubmed |
pubmed-article:21521467 | pubmed:author | pubmed-author:RayatG RGR | lld:pubmed |
pubmed-article:21521467 | pubmed:author | pubmed-author:ShafferVV | lld:pubmed |
pubmed-article:21521467 | pubmed:author | pubmed-author:BadellI RIR | lld:pubmed |
pubmed-article:21521467 | pubmed:author | pubmed-author:CardonaKK | lld:pubmed |
pubmed-article:21521467 | pubmed:copyrightInfo | ©2011 The Authors Journal compilation©2011 The American Society of Transplantation and the American Society of Transplant Surgeons. | lld:pubmed |
pubmed-article:21521467 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:21521467 | pubmed:volume | 11 | lld:pubmed |
pubmed-article:21521467 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:21521467 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:21521467 | pubmed:pagination | 947-57 | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:meshHeading | pubmed-meshheading:21521467... | lld:pubmed |
pubmed-article:21521467 | pubmed:year | 2011 | lld:pubmed |
pubmed-article:21521467 | pubmed:articleTitle | CD40-specific costimulation blockade enhances neonatal porcine islet survival in nonhuman primates. | lld:pubmed |
pubmed-article:21521467 | pubmed:affiliation | Emory Transplant Center, Emory University, Atlanta, GA, USA. | lld:pubmed |
pubmed-article:21521467 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:21521467 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |