Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21513387rdf:typepubmed:Citationlld:pubmed
pubmed-article:21513387lifeskim:mentionsumls-concept:C0018880lld:lifeskim
pubmed-article:21513387lifeskim:mentionsumls-concept:C1261322lld:lifeskim
pubmed-article:21513387lifeskim:mentionsumls-concept:C0337196lld:lifeskim
pubmed-article:21513387lifeskim:mentionsumls-concept:C0681019lld:lifeskim
pubmed-article:21513387lifeskim:mentionsumls-concept:C0871935lld:lifeskim
pubmed-article:21513387pubmed:issue15lld:pubmed
pubmed-article:21513387pubmed:dateCreated2011-4-25lld:pubmed
pubmed-article:21513387pubmed:abstractTextRotationally inelastic collisions of the CH(2) molecule in its a?(1)A(1) electronic state have been investigated. We have determined a potential energy surface (PES) for the interaction of rigid CH(2)(a?), frozen at its equilibrium geometry, with a helium atom, using a coupled-cluster method that includes all single and double excitations, as well as perturbative contributions of connected triple excitations [RSSCD(T)]. The PES is quite anisotropic, due to lack of electron density in the unoccupied CH(2) non-bonding orbital perpendicular to the molecular plane. Quantum scattering calculations have been carried out to compute state-to-state rotational energy transfer and elastic depolarization cross sections at collision energies up to 2400 cm(-1). These cross sections were thermally averaged to derive room-temperature rate constants. The total removal and elastic depolarization rate constants for the ortho k(a) = 1 levels agree well with recent experimental measurements by Hall, Sears, and their co-workers. We observe a strong even-odd alternation in the magnitude of the total rate constants which we attribute to the asymmetry splitting of the k(a) = 1 levels.lld:pubmed
pubmed-article:21513387pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21513387pubmed:languageenglld:pubmed
pubmed-article:21513387pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21513387pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:21513387pubmed:monthAprlld:pubmed
pubmed-article:21513387pubmed:issn1089-7690lld:pubmed
pubmed-article:21513387pubmed:authorpubmed-author:AlexanderMill...lld:pubmed
pubmed-article:21513387pubmed:authorpubmed-author:DagdigianPaul...lld:pubmed
pubmed-article:21513387pubmed:authorpubmed-author:MaLifangLlld:pubmed
pubmed-article:21513387pubmed:issnTypeElectroniclld:pubmed
pubmed-article:21513387pubmed:day21lld:pubmed
pubmed-article:21513387pubmed:volume134lld:pubmed
pubmed-article:21513387pubmed:ownerNLMlld:pubmed
pubmed-article:21513387pubmed:authorsCompleteYlld:pubmed
pubmed-article:21513387pubmed:pagination154307lld:pubmed
pubmed-article:21513387pubmed:dateRevised2011-9-15lld:pubmed
pubmed-article:21513387pubmed:year2011lld:pubmed
pubmed-article:21513387pubmed:articleTitleTheoretical investigation of rotationally inelastic collisions of CH2(a?) with helium.lld:pubmed
pubmed-article:21513387pubmed:affiliationDepartment of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA.lld:pubmed
pubmed-article:21513387pubmed:publicationTypeJournal Articlelld:pubmed