Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:2147426rdf:typepubmed:Citationlld:pubmed
pubmed-article:2147426lifeskim:mentionsumls-concept:C0005595lld:lifeskim
pubmed-article:2147426lifeskim:mentionsumls-concept:C0014792lld:lifeskim
pubmed-article:2147426lifeskim:mentionsumls-concept:C0031715lld:lifeskim
pubmed-article:2147426lifeskim:mentionsumls-concept:C0006376lld:lifeskim
pubmed-article:2147426lifeskim:mentionsumls-concept:C0069389lld:lifeskim
pubmed-article:2147426lifeskim:mentionsumls-concept:C1280500lld:lifeskim
pubmed-article:2147426lifeskim:mentionsumls-concept:C1158884lld:lifeskim
pubmed-article:2147426lifeskim:mentionsumls-concept:C1167622lld:lifeskim
pubmed-article:2147426lifeskim:mentionsumls-concept:C1152564lld:lifeskim
pubmed-article:2147426lifeskim:mentionsumls-concept:C0851285lld:lifeskim
pubmed-article:2147426pubmed:issue34lld:pubmed
pubmed-article:2147426pubmed:dateCreated1991-1-17lld:pubmed
pubmed-article:2147426pubmed:abstractTextThe Na/K/2Cl cotransport system in the avian erythrocyte can be activated by agents that raise intracellular cAMP suggesting the involvement of cAMP-dependent protein kinase (cAMP-PK) in its regulation. Another group of stimuli including fluoride and hypertonicity stimulate cotransport via cAMP-independent means. To further investigate the role of phosphorylation in these processes, we examined the effects of protein kinase inhibitors of 8 (p-Cl-phenylthio)-cAMP (cpt-cAMP), fluoride and hypertonic activation of cotransport in duck red cells, and [3H]bumetanide binding to isolated membranes. Preincubation of cells with the kinase inhibitors K-252a (Ki approximately 1.6 microM) and H-9 (Ki approximately 100 microM) blocked cpt-cAMP activation of bumetanide-sensitive 86Rb influx and bumetanide binding. These inhibitors also led to a rapid deactivation of cotransport and decrease in bumetanide binding when added to cells maximally stimulated by cpt-cAMP. K-252a and H-9 inhibited cotransport activation by cAMP-independent stimuli, but 10-fold higher concentrations were required, implying the involvement of a cAMP-independent phosphorylation process in the mechanism of action of these agents. Removal of stimuli that elevate cAMP leads to a rapid reversal of cotransport indicating the presence of active protein phosphatases in these cells. The protein phosphatase inhibitor okadaic acid (OA, EC50: 630 nM) stimulated both Na/K/2Cl cotransport and bumetanide binding to membranes. As with fluoride and hypertonic stimulation, the OA effect was inhibited only at relatively high concentrations of K-252a. Phosphorylation of the membrane skeletal protein goblin (Mr 230,000) at specific cAMP-dependent sites was used as an in situ marker for the state of activation of cAMP-PK. Goblin phosphorylation at these sites was increased by norepinephrine and cpt-cAMP and rapidly reversed by K-252a and H-9, confirming that both inhibitors do block cAMP-PK activity. While OA markedly increased overall phosphorylation of many erythrocyte membrane proteins, including goblin, it did not affect goblin phosphorylation at specific cAMP-dependent sites. These results implicate a cAMP-independent protein kinase in the mediation of the OA effect on cotransport and bumetanide binding. The bumetanide-binding component of the avian erythrocyte cotransporter, an Mr approximately 150,000 protein that can be photolabeled with the bumetanide analog [3H]4-benzoyl-5-sulfamoyl-3-(3-thenyloxy)-benzoic acid was found to be a phosphoprotein. These results strongly support the hypothesis that phosphorylation and dephosphorylation, possibly of the Na/K/2Cl cotransporter itself, regulates the activity oflld:pubmed
pubmed-article:2147426pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:languageenglld:pubmed
pubmed-article:2147426pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:citationSubsetIMlld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:2147426pubmed:statusMEDLINElld:pubmed
pubmed-article:2147426pubmed:monthDeclld:pubmed
pubmed-article:2147426pubmed:issn0021-9258lld:pubmed
pubmed-article:2147426pubmed:authorpubmed-author:HaasMMlld:pubmed
pubmed-article:2147426pubmed:authorpubmed-author:HegdeR SRSlld:pubmed
pubmed-article:2147426pubmed:authorpubmed-author:PalfreyH CHClld:pubmed
pubmed-article:2147426pubmed:authorpubmed-author:PewittE BEBlld:pubmed
pubmed-article:2147426pubmed:issnTypePrintlld:pubmed
pubmed-article:2147426pubmed:day5lld:pubmed
pubmed-article:2147426pubmed:volume265lld:pubmed
pubmed-article:2147426pubmed:ownerNLMlld:pubmed
pubmed-article:2147426pubmed:authorsCompleteYlld:pubmed
pubmed-article:2147426pubmed:pagination20747-56lld:pubmed
pubmed-article:2147426pubmed:dateRevised2011-11-17lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:meshHeadingpubmed-meshheading:2147426-...lld:pubmed
pubmed-article:2147426pubmed:year1990lld:pubmed
pubmed-article:2147426pubmed:articleTitleThe regulation of Na/K/2Cl cotransport and bumetanide binding in avian erythrocytes by protein phosphorylation and dephosphorylation. Effects of kinase inhibitors and okadaic acid.lld:pubmed
pubmed-article:2147426pubmed:affiliationDepartment of Pharmacological and Physiological Sciences, University of Chicago, Illinois 60637.lld:pubmed
pubmed-article:2147426pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:2147426pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed
pubmed-article:2147426pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:2147426lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:2147426lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:2147426lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:2147426lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:2147426lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:2147426lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:2147426lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:2147426lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:2147426lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:2147426lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:2147426lld:pubmed