Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21436045rdf:typepubmed:Citationlld:pubmed
pubmed-article:21436045lifeskim:mentionsumls-concept:C0019682lld:lifeskim
pubmed-article:21436045lifeskim:mentionsumls-concept:C0019699lld:lifeskim
pubmed-article:21436045lifeskim:mentionsumls-concept:C0034865lld:lifeskim
pubmed-article:21436045lifeskim:mentionsumls-concept:C0151317lld:lifeskim
pubmed-article:21436045lifeskim:mentionsumls-concept:C0036576lld:lifeskim
pubmed-article:21436045lifeskim:mentionsumls-concept:C0750572lld:lifeskim
pubmed-article:21436045lifeskim:mentionsumls-concept:C1521828lld:lifeskim
pubmed-article:21436045lifeskim:mentionsumls-concept:C1510992lld:lifeskim
pubmed-article:21436045lifeskim:mentionsumls-concept:C1707429lld:lifeskim
pubmed-article:21436045lifeskim:mentionsumls-concept:C1704419lld:lifeskim
pubmed-article:21436045pubmed:issue14lld:pubmed
pubmed-article:21436045pubmed:dateCreated2011-4-6lld:pubmed
pubmed-article:21436045pubmed:abstractTextHIV adaptation to a host in chronic infection is simulated by means of a Monte-Carlo algorithm that includes the evolutionary factors of mutation, positive selection with varying strength among sites, random genetic drift, linkage, and recombination. By comparing two sensitive measures of linkage disequilibrium (LD) and the number of diverse sites measured in simulation to patient data from one-time samples of pol gene obtained by single-genome sequencing from representative untreated patients, we estimate the effective recombination rate and the average selection coefficient to be on the order of 1% per genome per generation (10(-5) per base per generation) and 0.5%, respectively. The adaptation rate is twofold higher and fourfold lower than predicted in the absence of recombination and in the limit of very frequent recombination, respectively. The level of LD and the number of diverse sites observed in data also range between the values predicted in simulation for these two limiting cases. These results demonstrate the critical importance of finite population size, linkage, and recombination in HIV evolution.lld:pubmed
pubmed-article:21436045pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21436045pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21436045pubmed:languageenglld:pubmed
pubmed-article:21436045pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21436045pubmed:citationSubsetIMlld:pubmed
pubmed-article:21436045pubmed:statusMEDLINElld:pubmed
pubmed-article:21436045pubmed:monthAprlld:pubmed
pubmed-article:21436045pubmed:issn1091-6490lld:pubmed
pubmed-article:21436045pubmed:authorpubmed-author:CoffinJohn...lld:pubmed
pubmed-article:21436045pubmed:authorpubmed-author:RouzineIgor...lld:pubmed
pubmed-article:21436045pubmed:authorpubmed-author:MaldarelliFra...lld:pubmed
pubmed-article:21436045pubmed:authorpubmed-author:PalmerSarah...lld:pubmed
pubmed-article:21436045pubmed:authorpubmed-author:BatorskyRebec...lld:pubmed
pubmed-article:21436045pubmed:authorpubmed-author:KearneyMary...lld:pubmed
pubmed-article:21436045pubmed:issnTypeElectroniclld:pubmed
pubmed-article:21436045pubmed:day5lld:pubmed
pubmed-article:21436045pubmed:volume108lld:pubmed
pubmed-article:21436045pubmed:ownerNLMlld:pubmed
pubmed-article:21436045pubmed:authorsCompleteYlld:pubmed
pubmed-article:21436045pubmed:pagination5661-6lld:pubmed
pubmed-article:21436045pubmed:dateRevised2011-10-5lld:pubmed
pubmed-article:21436045pubmed:meshHeadingpubmed-meshheading:21436045...lld:pubmed
pubmed-article:21436045pubmed:meshHeadingpubmed-meshheading:21436045...lld:pubmed
pubmed-article:21436045pubmed:meshHeadingpubmed-meshheading:21436045...lld:pubmed
pubmed-article:21436045pubmed:meshHeadingpubmed-meshheading:21436045...lld:pubmed
pubmed-article:21436045pubmed:meshHeadingpubmed-meshheading:21436045...lld:pubmed
pubmed-article:21436045pubmed:meshHeadingpubmed-meshheading:21436045...lld:pubmed
pubmed-article:21436045pubmed:meshHeadingpubmed-meshheading:21436045...lld:pubmed
pubmed-article:21436045pubmed:meshHeadingpubmed-meshheading:21436045...lld:pubmed
pubmed-article:21436045pubmed:meshHeadingpubmed-meshheading:21436045...lld:pubmed
pubmed-article:21436045pubmed:meshHeadingpubmed-meshheading:21436045...lld:pubmed
pubmed-article:21436045pubmed:meshHeadingpubmed-meshheading:21436045...lld:pubmed
pubmed-article:21436045pubmed:meshHeadingpubmed-meshheading:21436045...lld:pubmed
pubmed-article:21436045pubmed:meshHeadingpubmed-meshheading:21436045...lld:pubmed
pubmed-article:21436045pubmed:year2011lld:pubmed
pubmed-article:21436045pubmed:articleTitleEstimate of effective recombination rate and average selection coefficient for HIV in chronic infection.lld:pubmed
pubmed-article:21436045pubmed:affiliationDepartment of Physics and Astronomy, Tufts University, Medford, MA 02155, USA.lld:pubmed
pubmed-article:21436045pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:21436045pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
pubmed-article:21436045pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed