Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21419414rdf:typepubmed:Citationlld:pubmed
pubmed-article:21419414lifeskim:mentionsumls-concept:C0013878lld:lifeskim
pubmed-article:21419414lifeskim:mentionsumls-concept:C0184512lld:lifeskim
pubmed-article:21419414lifeskim:mentionsumls-concept:C0205360lld:lifeskim
pubmed-article:21419414lifeskim:mentionsumls-concept:C1706211lld:lifeskim
pubmed-article:21419414lifeskim:mentionsumls-concept:C0681814lld:lifeskim
pubmed-article:21419414lifeskim:mentionsumls-concept:C0007961lld:lifeskim
pubmed-article:21419414lifeskim:mentionsumls-concept:C1546426lld:lifeskim
pubmed-article:21419414lifeskim:mentionsumls-concept:C1548280lld:lifeskim
pubmed-article:21419414pubmed:issue1lld:pubmed
pubmed-article:21419414pubmed:dateCreated2011-4-11lld:pubmed
pubmed-article:21419414pubmed:abstractTextWe consider the interaction of colloidal spheres in the presence of mono-, di-, and trivalent ions. The colloids are stabilized by electrostatic repulsion due to surface charges. The repulsive part of the interaction potential ?(d) is deduced from precise measurements of the rate of slow coagulation. These "microsurface potential measurements" allow us to determine a weak repulsion in which ?(d) is of the order of a few k(B)T. These data are compared to ? potential measured under similar conditions. At higher concentrations both di- and trivalent counterions accumulate at the very proximity of the particle surface leading to charge reversal. The salt concentration c(cr) at which charge reversal occurs is found to be always above the critical coagulation concentration c(ccc). The analysis of ?(d) and of the ? potential demonstrates, however, that adsorption of multivalent counterions starts far below c(cr). Hence, colloid stability in the presence of di- and trivalent ions cannot be described in terms of a DLVO ansatz assuming a surface charge that is constant with regard to the ionic strength.lld:pubmed
pubmed-article:21419414pubmed:languageenglld:pubmed
pubmed-article:21419414pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21419414pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:21419414pubmed:monthJunlld:pubmed
pubmed-article:21419414pubmed:issn1095-7103lld:pubmed
pubmed-article:21419414pubmed:authorpubmed-author:SchneiderChri...lld:pubmed
pubmed-article:21419414pubmed:authorpubmed-author:BallauffMatth...lld:pubmed
pubmed-article:21419414pubmed:authorpubmed-author:JusufiArbenAlld:pubmed
pubmed-article:21419414pubmed:authorpubmed-author:HanischMathia...lld:pubmed
pubmed-article:21419414pubmed:authorpubmed-author:WedelBastianBlld:pubmed
pubmed-article:21419414pubmed:copyrightInfoCopyright © 2011 Elsevier Inc. All rights reserved.lld:pubmed
pubmed-article:21419414pubmed:issnTypeElectroniclld:pubmed
pubmed-article:21419414pubmed:day1lld:pubmed
pubmed-article:21419414pubmed:volume358lld:pubmed
pubmed-article:21419414pubmed:ownerNLMlld:pubmed
pubmed-article:21419414pubmed:authorsCompleteYlld:pubmed
pubmed-article:21419414pubmed:pagination62-7lld:pubmed
pubmed-article:21419414pubmed:year2011lld:pubmed
pubmed-article:21419414pubmed:articleTitleExperimental study of electrostatically stabilized colloidal particles: colloidal stability and charge reversal.lld:pubmed
pubmed-article:21419414pubmed:affiliationF-I2 Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Berlin, Germany. christian.schneider@helmholtz-berlin.delld:pubmed
pubmed-article:21419414pubmed:publicationTypeJournal Articlelld:pubmed