Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21393761rdf:typepubmed:Citationlld:pubmed
pubmed-article:21393761lifeskim:mentionsumls-concept:C0302908lld:lifeskim
pubmed-article:21393761lifeskim:mentionsumls-concept:C1521991lld:lifeskim
pubmed-article:21393761lifeskim:mentionsumls-concept:C1979963lld:lifeskim
pubmed-article:21393761lifeskim:mentionsumls-concept:C0178587lld:lifeskim
pubmed-article:21393761lifeskim:mentionsumls-concept:C0441722lld:lifeskim
pubmed-article:21393761lifeskim:mentionsumls-concept:C2003903lld:lifeskim
pubmed-article:21393761lifeskim:mentionsumls-concept:C0439202lld:lifeskim
pubmed-article:21393761pubmed:issue23lld:pubmed
pubmed-article:21393761pubmed:dateCreated2011-3-11lld:pubmed
pubmed-article:21393761pubmed:abstractTextUltrathin (<12 nm) films of tetrakis(trimethyl)siloxysilane (TTMSS) have been confined by atomically flat mica membranes in the presence and absence of applied normal forces. When applying normal forces, discrete film thickness transitions occur, each involving the expulsion of TTMSS molecules. Using optical interferometry we have measured the step size associated with a film thickness transition (7.5 Å for compressed, 8.4 Å for equilibrated films) to be smaller than the molecular diameter of 9.0 Å. Layering transitions with a discrete step size are commonly regarded as evidence for strong layering of the liquid's molecules in planes parallel to the confining surfaces and it is assumed that the layer spacing equals the measured periodicity of the oscillatory force profile. Using x-ray reflectivity (XRR), which directly yields the liquid's density profile along the confinement direction, we show that the layer spacing (10-11 Å) proves to be on average significantly larger than both the step size of a layering transition and the molecular diameter. We observe at least one boundary layer of different electron density and periodicity than the layers away from the surfaces.lld:pubmed
pubmed-article:21393761pubmed:languageenglld:pubmed
pubmed-article:21393761pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21393761pubmed:citationSubsetIMlld:pubmed
pubmed-article:21393761pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21393761pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21393761pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21393761pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21393761pubmed:statusMEDLINElld:pubmed
pubmed-article:21393761pubmed:monthJunlld:pubmed
pubmed-article:21393761pubmed:issn1361-648Xlld:pubmed
pubmed-article:21393761pubmed:authorpubmed-author:BunkOliverOlld:pubmed
pubmed-article:21393761pubmed:authorpubmed-author:BalmerTobias...lld:pubmed
pubmed-article:21393761pubmed:authorpubmed-author:SatapathyDill...lld:pubmed
pubmed-article:21393761pubmed:authorpubmed-author:van der...lld:pubmed
pubmed-article:21393761pubmed:authorpubmed-author:HeubergerManf...lld:pubmed
pubmed-article:21393761pubmed:authorpubmed-author:PerretEdithElld:pubmed
pubmed-article:21393761pubmed:authorpubmed-author:NygårdKimKlld:pubmed
pubmed-article:21393761pubmed:issnTypeElectroniclld:pubmed
pubmed-article:21393761pubmed:day16lld:pubmed
pubmed-article:21393761pubmed:volume22lld:pubmed
pubmed-article:21393761pubmed:ownerNLMlld:pubmed
pubmed-article:21393761pubmed:authorsCompleteYlld:pubmed
pubmed-article:21393761pubmed:pagination235102lld:pubmed
pubmed-article:21393761pubmed:meshHeadingpubmed-meshheading:21393761...lld:pubmed
pubmed-article:21393761pubmed:meshHeadingpubmed-meshheading:21393761...lld:pubmed
pubmed-article:21393761pubmed:meshHeadingpubmed-meshheading:21393761...lld:pubmed
pubmed-article:21393761pubmed:meshHeadingpubmed-meshheading:21393761...lld:pubmed
pubmed-article:21393761pubmed:meshHeadingpubmed-meshheading:21393761...lld:pubmed
pubmed-article:21393761pubmed:meshHeadingpubmed-meshheading:21393761...lld:pubmed
pubmed-article:21393761pubmed:meshHeadingpubmed-meshheading:21393761...lld:pubmed
pubmed-article:21393761pubmed:meshHeadingpubmed-meshheading:21393761...lld:pubmed
pubmed-article:21393761pubmed:meshHeadingpubmed-meshheading:21393761...lld:pubmed
pubmed-article:21393761pubmed:meshHeadingpubmed-meshheading:21393761...lld:pubmed
pubmed-article:21393761pubmed:meshHeadingpubmed-meshheading:21393761...lld:pubmed
pubmed-article:21393761pubmed:year2010lld:pubmed
pubmed-article:21393761pubmed:articleTitleMolecular liquid under nanometre confinement: density profiles underlying oscillatory forces.lld:pubmed
pubmed-article:21393761pubmed:affiliationPaul Scherrer Institut, 5232 Villigen PSI, Switzerland.lld:pubmed
pubmed-article:21393761pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:21393761pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed