Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21392496rdf:typepubmed:Citationlld:pubmed
pubmed-article:21392496lifeskim:mentionsumls-concept:C0995531lld:lifeskim
pubmed-article:21392496lifeskim:mentionsumls-concept:C0162641lld:lifeskim
pubmed-article:21392496lifeskim:mentionsumls-concept:C0023884lld:lifeskim
pubmed-article:21392496lifeskim:mentionsumls-concept:C0332157lld:lifeskim
pubmed-article:21392496lifeskim:mentionsumls-concept:C0086272lld:lifeskim
pubmed-article:21392496lifeskim:mentionsumls-concept:C1407029lld:lifeskim
pubmed-article:21392496lifeskim:mentionsumls-concept:C0211296lld:lifeskim
pubmed-article:21392496pubmed:issue1-2lld:pubmed
pubmed-article:21392496pubmed:dateCreated2011-4-12lld:pubmed
pubmed-article:21392496pubmed:abstractTextAlthough accumulation of the liver toxin microcystin in phytoplanktivorous fish has been demonstrated in captive fish and in natural ecosystems, the relation between microcystin in ingested algae and the pattern of buildup of microcystin in fish is poorly known. In this month-long study performed at a Brazilian fish farm, 45 mature Oreochromis niloticus were fed daily with fresh seston periodically dominated by toxic Microcystis sp. Microcystin was measured daily in the food and every 5 days in liver and muscle samples. Control fish received a diet of seston that was low in toxic cyanobacteria. Initially, in treatment ponds, microcystin available for fish increased from 6.5 to 66.9 ng microcystin fish(-1)day(-1), which was accompanied by an increase from 5.5 to 35.4 ng microcysting liver(-1). Microcystin in muscle was below our detection limit of 4 ng g tissue(-1) for the entire study. In the bloom phase, available microcystin reached its highest concentration (4450 ng MC fish(-1)day(-1)) then decreased to 910 ng microcystin fish(-1)day(-1) on day 31. During this period, microcystin reached its highest concentration of 81.6 ng MC g liver(-1) and stayed high until the end of the experiment. A model based on rapid uptake, saturation, and exponential loss was built with these experimental results, and verified with data from the literature. Our model showed that accumulation was up to 50% of ingestion at low doses, but at intermediate doses, the onset of elimination led to a decline of liver burden. Although the accumulation rate confirms the high contamination potential of microcystin, it was balanced by a high depuration rate and this efficient systemic elimination may explain the tolerance of these fish to toxic blooms in the wild.lld:pubmed
pubmed-article:21392496pubmed:languageenglld:pubmed
pubmed-article:21392496pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21392496pubmed:citationSubsetIMlld:pubmed
pubmed-article:21392496pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21392496pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21392496pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21392496pubmed:statusMEDLINElld:pubmed
pubmed-article:21392496pubmed:monthMaylld:pubmed
pubmed-article:21392496pubmed:issn1879-1514lld:pubmed
pubmed-article:21392496pubmed:authorpubmed-author:GianiAlessand...lld:pubmed
pubmed-article:21392496pubmed:authorpubmed-author:DebloisCharle...lld:pubmed
pubmed-article:21392496pubmed:authorpubmed-author:BirdDavid FDFlld:pubmed
pubmed-article:21392496pubmed:copyrightInfoCopyright © 2011 Elsevier B.V. All rights reserved.lld:pubmed
pubmed-article:21392496pubmed:issnTypeElectroniclld:pubmed
pubmed-article:21392496pubmed:volume103lld:pubmed
pubmed-article:21392496pubmed:ownerNLMlld:pubmed
pubmed-article:21392496pubmed:authorsCompleteYlld:pubmed
pubmed-article:21392496pubmed:pagination63-70lld:pubmed
pubmed-article:21392496pubmed:meshHeadingpubmed-meshheading:21392496...lld:pubmed
pubmed-article:21392496pubmed:meshHeadingpubmed-meshheading:21392496...lld:pubmed
pubmed-article:21392496pubmed:meshHeadingpubmed-meshheading:21392496...lld:pubmed
pubmed-article:21392496pubmed:meshHeadingpubmed-meshheading:21392496...lld:pubmed
pubmed-article:21392496pubmed:meshHeadingpubmed-meshheading:21392496...lld:pubmed
pubmed-article:21392496pubmed:meshHeadingpubmed-meshheading:21392496...lld:pubmed
pubmed-article:21392496pubmed:meshHeadingpubmed-meshheading:21392496...lld:pubmed
pubmed-article:21392496pubmed:meshHeadingpubmed-meshheading:21392496...lld:pubmed
pubmed-article:21392496pubmed:meshHeadingpubmed-meshheading:21392496...lld:pubmed
pubmed-article:21392496pubmed:meshHeadingpubmed-meshheading:21392496...lld:pubmed
pubmed-article:21392496pubmed:meshHeadingpubmed-meshheading:21392496...lld:pubmed
pubmed-article:21392496pubmed:meshHeadingpubmed-meshheading:21392496...lld:pubmed
pubmed-article:21392496pubmed:meshHeadingpubmed-meshheading:21392496...lld:pubmed
pubmed-article:21392496pubmed:year2011lld:pubmed
pubmed-article:21392496pubmed:articleTitleExperimental model of microcystin accumulation in the liver of Oreochromis niloticus exposed subchronically to a toxic bloom of Microcystis sp.lld:pubmed
pubmed-article:21392496pubmed:affiliationDép. Sciences Biologiques, Université du Québec à Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC, Canada H3C 3P8.lld:pubmed
pubmed-article:21392496pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:21392496pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed