Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21335864rdf:typepubmed:Citationlld:pubmed
pubmed-article:21335864lifeskim:mentionsumls-concept:C0005839lld:lifeskim
pubmed-article:21335864lifeskim:mentionsumls-concept:C0441635lld:lifeskim
pubmed-article:21335864lifeskim:mentionsumls-concept:C0034602lld:lifeskim
pubmed-article:21335864lifeskim:mentionsumls-concept:C0679083lld:lifeskim
pubmed-article:21335864pubmed:dateCreated2011-2-21lld:pubmed
pubmed-article:21335864pubmed:abstractTextTraining in interventional radiology is slowly shifting towards simulation which allows the repetition of many interventions without putting the patient at risk. Accurate segmentation of anatomical structures is a prerequisite of realistic surgical simulation. Therefore, our aim is to develop a generic approach to provide fast and precise segmentation of various virtual anatomies covering a wide range of pathology, directly from patient CT/MRA images. This paper presents a segmentation framework including two segmentation methods: region model based level set segmentation and hierarchical segmentation. We compare them to an open source application ITK-SNAP which provides similar approaches. The subjective human influence such as inconsistent inter-observer errors and aliasing artifacts etc. are analysed. The proposed segmentation techniques have been successfully applied to create a database of various anatomies with different pathologies, which is used in computer-based simulation for interventional radiology training.lld:pubmed
pubmed-article:21335864pubmed:languageenglld:pubmed
pubmed-article:21335864pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21335864pubmed:citationSubsetTlld:pubmed
pubmed-article:21335864pubmed:statusMEDLINElld:pubmed
pubmed-article:21335864pubmed:issn0926-9630lld:pubmed
pubmed-article:21335864pubmed:authorpubmed-author:GouldDerekDlld:pubmed
pubmed-article:21335864pubmed:authorpubmed-author:BelloFernando...lld:pubmed
pubmed-article:21335864pubmed:authorpubmed-author:SongYiYlld:pubmed
pubmed-article:21335864pubmed:authorpubmed-author:LubozVincentVlld:pubmed
pubmed-article:21335864pubmed:authorpubmed-author:KingDanielDlld:pubmed
pubmed-article:21335864pubmed:authorpubmed-author:BulpittAndyAlld:pubmed
pubmed-article:21335864pubmed:authorpubmed-author:DinNizarNlld:pubmed
pubmed-article:21335864pubmed:issnTypePrintlld:pubmed
pubmed-article:21335864pubmed:volume163lld:pubmed
pubmed-article:21335864pubmed:ownerNLMlld:pubmed
pubmed-article:21335864pubmed:authorsCompleteYlld:pubmed
pubmed-article:21335864pubmed:pagination599-605lld:pubmed
pubmed-article:21335864pubmed:meshHeadingpubmed-meshheading:21335864...lld:pubmed
pubmed-article:21335864pubmed:meshHeadingpubmed-meshheading:21335864...lld:pubmed
pubmed-article:21335864pubmed:meshHeadingpubmed-meshheading:21335864...lld:pubmed
pubmed-article:21335864pubmed:meshHeadingpubmed-meshheading:21335864...lld:pubmed
pubmed-article:21335864pubmed:meshHeadingpubmed-meshheading:21335864...lld:pubmed
pubmed-article:21335864pubmed:meshHeadingpubmed-meshheading:21335864...lld:pubmed
pubmed-article:21335864pubmed:meshHeadingpubmed-meshheading:21335864...lld:pubmed
pubmed-article:21335864pubmed:meshHeadingpubmed-meshheading:21335864...lld:pubmed
pubmed-article:21335864pubmed:meshHeadingpubmed-meshheading:21335864...lld:pubmed
pubmed-article:21335864pubmed:meshHeadingpubmed-meshheading:21335864...lld:pubmed
pubmed-article:21335864pubmed:meshHeadingpubmed-meshheading:21335864...lld:pubmed
pubmed-article:21335864pubmed:year2011lld:pubmed
pubmed-article:21335864pubmed:articleTitleSegmentation of 3D vasculatures for interventional radiology simulation.lld:pubmed
pubmed-article:21335864pubmed:affiliationSchool of Computing, University of Leeds, UK. y.song@leeds.ac.uklld:pubmed
pubmed-article:21335864pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:21335864pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed