Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21308767rdf:typepubmed:Citationlld:pubmed
pubmed-article:21308767lifeskim:mentionsumls-concept:C0242618lld:lifeskim
pubmed-article:21308767lifeskim:mentionsumls-concept:C2350277lld:lifeskim
pubmed-article:21308767lifeskim:mentionsumls-concept:C0596609lld:lifeskim
pubmed-article:21308767lifeskim:mentionsumls-concept:C1514873lld:lifeskim
pubmed-article:21308767pubmed:issue3lld:pubmed
pubmed-article:21308767pubmed:dateCreated2011-3-11lld:pubmed
pubmed-article:21308767pubmed:abstractTextMany complex diseases are likely to be a result of the interplay of genes and environmental exposures. The standard analysis in a genome-wide association study (GWAS) scans for main effects and ignores the potentially useful information in the available exposure data. Two recently proposed methods that exploit environmental exposure information involve a two-step analysis aimed at prioritizing the large number of SNPs tested to highlight those most likely to be involved in a GE interaction. For example, Murcray et al. ([2009] Am J Epidemiol 169:219–226) proposed screening on a test that models the G-E association induced by an interaction in the combined case-control sample. Alternatively, Kooperberg and LeBlanc ([2008] Genet Epidemiol 32:255–263) suggested screening on genetic marginal effects. In both methods, SNPs that pass the respective screening step at a pre-specified significance threshold are followed up with a formal test of interaction in the second step. We propose a hybrid method that combines these two screening approaches by allocating a proportion of the overall genomewide significance level to each test. We show that the Murcray et al. approach is often the most efficient method, but that the hybrid approach is a powerful and robust method for nearly any underlying model. As an example, for a GWAS of 1 million markers including a single true disease SNP with minor allele frequency of 0.15, and a binary exposure with prevalence 0.3, the Murcray, Kooperberg and hybrid methods are 1.90, 1.27, and 1.87 times as efficient, respectively, as the traditional case-control analysis to detect an interaction effect size of 2.0.lld:pubmed
pubmed-article:21308767pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21308767pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21308767pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21308767pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21308767pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21308767pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21308767pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21308767pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21308767pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21308767pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21308767pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21308767pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21308767pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21308767pubmed:languageenglld:pubmed
pubmed-article:21308767pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21308767pubmed:citationSubsetIMlld:pubmed
pubmed-article:21308767pubmed:statusMEDLINElld:pubmed
pubmed-article:21308767pubmed:monthAprlld:pubmed
pubmed-article:21308767pubmed:issn1098-2272lld:pubmed
pubmed-article:21308767pubmed:authorpubmed-author:GaudermanW...lld:pubmed
pubmed-article:21308767pubmed:authorpubmed-author:ThomasDuncan...lld:pubmed
pubmed-article:21308767pubmed:authorpubmed-author:ContiDavid...lld:pubmed
pubmed-article:21308767pubmed:authorpubmed-author:LewingerJuan...lld:pubmed
pubmed-article:21308767pubmed:authorpubmed-author:MurcrayCassan...lld:pubmed
pubmed-article:21308767pubmed:issnTypeElectroniclld:pubmed
pubmed-article:21308767pubmed:volume35lld:pubmed
pubmed-article:21308767pubmed:ownerNLMlld:pubmed
pubmed-article:21308767pubmed:authorsCompleteYlld:pubmed
pubmed-article:21308767pubmed:pagination201-10lld:pubmed
pubmed-article:21308767pubmed:dateRevised2011-9-26lld:pubmed
pubmed-article:21308767pubmed:meshHeadingpubmed-meshheading:21308767...lld:pubmed
pubmed-article:21308767pubmed:meshHeadingpubmed-meshheading:21308767...lld:pubmed
pubmed-article:21308767pubmed:meshHeadingpubmed-meshheading:21308767...lld:pubmed
pubmed-article:21308767pubmed:meshHeadingpubmed-meshheading:21308767...lld:pubmed
pubmed-article:21308767pubmed:meshHeadingpubmed-meshheading:21308767...lld:pubmed
pubmed-article:21308767pubmed:meshHeadingpubmed-meshheading:21308767...lld:pubmed
pubmed-article:21308767pubmed:meshHeadingpubmed-meshheading:21308767...lld:pubmed
pubmed-article:21308767pubmed:meshHeadingpubmed-meshheading:21308767...lld:pubmed
pubmed-article:21308767pubmed:meshHeadingpubmed-meshheading:21308767...lld:pubmed
pubmed-article:21308767pubmed:meshHeadingpubmed-meshheading:21308767...lld:pubmed
pubmed-article:21308767pubmed:meshHeadingpubmed-meshheading:21308767...lld:pubmed
pubmed-article:21308767pubmed:year2011lld:pubmed
pubmed-article:21308767pubmed:articleTitleSample size requirements to detect gene-environment interactions in genome-wide association studies.lld:pubmed
pubmed-article:21308767pubmed:affiliationDepartment of Preventive Medicine, University of Southern California, Los Angeles, California 90089-9010, USA. Murcray@usc.edulld:pubmed
pubmed-article:21308767pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:21308767pubmed:publicationTypeComparative Studylld:pubmed
pubmed-article:21308767pubmed:publicationTypeCommentlld:pubmed
pubmed-article:21308767pubmed:publicationTypeEvaluation Studieslld:pubmed
pubmed-article:21308767pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:21308767lld:pubmed