Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21289290rdf:typepubmed:Citationlld:pubmed
pubmed-article:21289290lifeskim:mentionsumls-concept:C0242692lld:lifeskim
pubmed-article:21289290lifeskim:mentionsumls-concept:C0036226lld:lifeskim
pubmed-article:21289290lifeskim:mentionsumls-concept:C0006772lld:lifeskim
pubmed-article:21289290lifeskim:mentionsumls-concept:C0054493lld:lifeskim
pubmed-article:21289290lifeskim:mentionsumls-concept:C0221099lld:lifeskim
pubmed-article:21289290lifeskim:mentionsumls-concept:C1419781lld:lifeskim
pubmed-article:21289290lifeskim:mentionsumls-concept:C0030685lld:lifeskim
pubmed-article:21289290lifeskim:mentionsumls-concept:C0596235lld:lifeskim
pubmed-article:21289290lifeskim:mentionsumls-concept:C1709059lld:lifeskim
pubmed-article:21289290lifeskim:mentionsumls-concept:C0851285lld:lifeskim
pubmed-article:21289290lifeskim:mentionsumls-concept:C0680255lld:lifeskim
pubmed-article:21289290lifeskim:mentionsumls-concept:C0391871lld:lifeskim
pubmed-article:21289290lifeskim:mentionsumls-concept:C1283071lld:lifeskim
pubmed-article:21289290lifeskim:mentionsumls-concept:C1963578lld:lifeskim
pubmed-article:21289290pubmed:issue5lld:pubmed
pubmed-article:21289290pubmed:dateCreated2011-4-27lld:pubmed
pubmed-article:21289290pubmed:abstractTextIn vitro, calmodulin (CaM) and S100A1 activate the skeletal muscle ryanodine receptor ion channel (RyR1) at submicromolar Ca(2+) concentrations, whereas at micromolar Ca(2+) concentrations, CaM inhibits RyR1. One amino acid substitution (RyR1-L3625D) has previously been demonstrated to impair CaM binding and regulation of RyR1. Here we show that the RyR1-L3625D substitution also abolishes S100A1 binding. To determine the physiological relevance of these findings, mutant mice were generated with the RyR1-L3625D substitution in exon 74, which encodes the CaM and S100A1 binding domain of RyR1. Homozygous mutant mice (Ryr1(D/D)) were viable and appeared normal. However, single RyR1 channel recordings from Ryr1(D/D) mice exhibited impaired activation by CaM and S100A1 and impaired CaCaM inhibition. Isolated flexor digitorum brevis muscle fibers from Ryr1(D/D) mice had depressed Ca(2+) transients when stimulated by a single action potential. However, during repetitive stimulation, the mutant fibers demonstrated greater relative summation of the Ca(2+) transients. Consistently, in vivo stimulation of tibialis anterior muscles in Ryr1(D/D) mice demonstrated reduced twitch force in response to a single action potential, but greater summation of force during high-frequency stimulation. During repetitive stimulation, Ryr1(D/D) fibers exhibited slowed inactivation of sarcoplasmic reticulum Ca(2+) release flux, consistent with increased summation of the Ca(2+) transient and contractile force. Peak Ca(2+) release flux was suppressed at all voltages in voltage-clamped Ryr1(D/D) fibers. The results suggest that the RyR1-L3625D mutation removes both an early activating effect of S100A1 and CaM and delayed suppressing effect of CaCaM on RyR1 Ca(2+) release, providing new insights into CaM and S100A1 regulation of skeletal muscle excitation-contraction coupling.lld:pubmed
pubmed-article:21289290pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21289290pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21289290pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21289290pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21289290pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21289290pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21289290pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21289290pubmed:languageenglld:pubmed
pubmed-article:21289290pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21289290pubmed:citationSubsetIMlld:pubmed
pubmed-article:21289290pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21289290pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21289290pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21289290pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21289290pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21289290pubmed:statusMEDLINElld:pubmed
pubmed-article:21289290pubmed:monthMaylld:pubmed
pubmed-article:21289290pubmed:issn1522-1563lld:pubmed
pubmed-article:21289290pubmed:authorpubmed-author:LinN GNGlld:pubmed
pubmed-article:21289290pubmed:authorpubmed-author:SchneiderMart...lld:pubmed
pubmed-article:21289290pubmed:authorpubmed-author:WeberDavidDlld:pubmed
pubmed-article:21289290pubmed:authorpubmed-author:EuJerry PJPlld:pubmed
pubmed-article:21289290pubmed:authorpubmed-author:MeissnerGerha...lld:pubmed
pubmed-article:21289290pubmed:authorpubmed-author:YamaguchiNaoh...lld:pubmed
pubmed-article:21289290pubmed:authorpubmed-author:MelzerWernerWlld:pubmed
pubmed-article:21289290pubmed:authorpubmed-author:PasekDaniel...lld:pubmed
pubmed-article:21289290pubmed:authorpubmed-author:GhassemiFarsh...lld:pubmed
pubmed-article:21289290pubmed:authorpubmed-author:LoveringRicha...lld:pubmed
pubmed-article:21289290pubmed:authorpubmed-author:WilderPaul...lld:pubmed
pubmed-article:21289290pubmed:authorpubmed-author:Hernández-Och...lld:pubmed
pubmed-article:21289290pubmed:authorpubmed-author:ProsserBenjam...lld:pubmed
pubmed-article:21289290pubmed:authorpubmed-author:CannonBrian...lld:pubmed
pubmed-article:21289290pubmed:issnTypeElectroniclld:pubmed
pubmed-article:21289290pubmed:volume300lld:pubmed
pubmed-article:21289290pubmed:ownerNLMlld:pubmed
pubmed-article:21289290pubmed:authorsCompleteYlld:pubmed
pubmed-article:21289290pubmed:paginationC998-C1012lld:pubmed
pubmed-article:21289290pubmed:meshHeadingpubmed-meshheading:21289290...lld:pubmed
pubmed-article:21289290pubmed:meshHeadingpubmed-meshheading:21289290...lld:pubmed
pubmed-article:21289290pubmed:meshHeadingpubmed-meshheading:21289290...lld:pubmed
pubmed-article:21289290pubmed:meshHeadingpubmed-meshheading:21289290...lld:pubmed
pubmed-article:21289290pubmed:meshHeadingpubmed-meshheading:21289290...lld:pubmed
pubmed-article:21289290pubmed:meshHeadingpubmed-meshheading:21289290...lld:pubmed
pubmed-article:21289290pubmed:meshHeadingpubmed-meshheading:21289290...lld:pubmed
pubmed-article:21289290pubmed:meshHeadingpubmed-meshheading:21289290...lld:pubmed
pubmed-article:21289290pubmed:meshHeadingpubmed-meshheading:21289290...lld:pubmed
pubmed-article:21289290pubmed:meshHeadingpubmed-meshheading:21289290...lld:pubmed
pubmed-article:21289290pubmed:meshHeadingpubmed-meshheading:21289290...lld:pubmed
pubmed-article:21289290pubmed:meshHeadingpubmed-meshheading:21289290...lld:pubmed
pubmed-article:21289290pubmed:meshHeadingpubmed-meshheading:21289290...lld:pubmed
pubmed-article:21289290pubmed:meshHeadingpubmed-meshheading:21289290...lld:pubmed
pubmed-article:21289290pubmed:year2011lld:pubmed
pubmed-article:21289290pubmed:articleTitleModulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle expressing ryanodine receptor impaired in regulation by calmodulin and S100A1.lld:pubmed
pubmed-article:21289290pubmed:affiliationDept. of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA.lld:pubmed
pubmed-article:21289290pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:21289290pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
pubmed-article:21289290pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed
entrez-gene:12313entrezgene:pubmedpubmed-article:21289290lld:entrezgene
entrez-gene:20190entrezgene:pubmedpubmed-article:21289290lld:entrezgene
entrez-gene:20193entrezgene:pubmedpubmed-article:21289290lld:entrezgene
http://linkedlifedata.com/r...entrezgene:pubmedpubmed-article:21289290lld:entrezgene
http://linkedlifedata.com/r...entrezgene:pubmedpubmed-article:21289290lld:entrezgene
http://linkedlifedata.com/r...entrezgene:pubmedpubmed-article:21289290lld:entrezgene
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:21289290lld:pubmed