pubmed-article:21288996 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:21288996 | lifeskim:mentions | umls-concept:C0029341 | lld:lifeskim |
pubmed-article:21288996 | lifeskim:mentions | umls-concept:C0018909 | lld:lifeskim |
pubmed-article:21288996 | lifeskim:mentions | umls-concept:C0184511 | lld:lifeskim |
pubmed-article:21288996 | lifeskim:mentions | umls-concept:C0184512 | lld:lifeskim |
pubmed-article:21288996 | lifeskim:mentions | umls-concept:C0020964 | lld:lifeskim |
pubmed-article:21288996 | lifeskim:mentions | umls-concept:C0042196 | lld:lifeskim |
pubmed-article:21288996 | lifeskim:mentions | umls-concept:C0205263 | lld:lifeskim |
pubmed-article:21288996 | pubmed:issue | 4 | lld:pubmed |
pubmed-article:21288996 | pubmed:dateCreated | 2011-4-8 | lld:pubmed |
pubmed-article:21288996 | pubmed:abstractText | The emergence of the swine-origin 2009 influenza pandemic illustrates the need for improved vaccine production and delivery strategies. Skin-based immunization represents an attractive alternative to traditional hypodermic needle vaccination routes. Microneedles (MNs) can deliver vaccine to the epidermis and dermis, which are rich in antigen-presenting cells (APC) such as Langerhans cells and dermal dendritic cells. Previous studies using coated or dissolvable microneedles emphasized the use of inactivated influenza virus or virus-like particles as skin-based vaccines. However, most currently available influenza vaccines consist of solubilized viral protein antigens. Here we test the hypothesis that a recombinant subunit influenza vaccine can be delivered to the skin by coated microneedles and can induce protective immunity. We found that mice vaccinated via MN delivery with a stabilized recombinant trimeric soluble hemagglutinin (sHA) derived from A/Aichi/2/68 (H3) virus had significantly higher immune responses than did mice vaccinated with unmodified sHA. These mice were fully protected against a lethal challenge with influenza virus. Analysis of postchallenge lung titers showed that MN-immunized mice had completely cleared the virus from their lungs, in contrast to mice given the same vaccine by a standard subcutaneous route. In addition, we observed a higher ratio of antigen-specific Th1 cells in trimeric sHA-vaccinated mice and a greater mucosal antibody response. Our data therefore demonstrate the improved efficacy of a skin-based recombinant subunit influenza vaccine and emphasize the advantage of this route of vaccination for a protein subunit vaccine. | lld:pubmed |
pubmed-article:21288996 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21288996 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21288996 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21288996 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21288996 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21288996 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21288996 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21288996 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21288996 | pubmed:language | eng | lld:pubmed |
pubmed-article:21288996 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21288996 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:21288996 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21288996 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21288996 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21288996 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21288996 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:21288996 | pubmed:month | Apr | lld:pubmed |
pubmed-article:21288996 | pubmed:issn | 1556-679X | lld:pubmed |
pubmed-article:21288996 | pubmed:author | pubmed-author:CompansRichar... | lld:pubmed |
pubmed-article:21288996 | pubmed:author | pubmed-author:PrausnitzMark... | lld:pubmed |
pubmed-article:21288996 | pubmed:author | pubmed-author:SkountzouIoan... | lld:pubmed |
pubmed-article:21288996 | pubmed:author | pubmed-author:WeldonWilliam... | lld:pubmed |
pubmed-article:21288996 | pubmed:author | pubmed-author:ZarnitsynVlad... | lld:pubmed |
pubmed-article:21288996 | pubmed:author | pubmed-author:WangBaozhongB | lld:pubmed |
pubmed-article:21288996 | pubmed:author | pubmed-author:KoutsonanosDi... | lld:pubmed |
pubmed-article:21288996 | pubmed:author | pubmed-author:MartinMaria... | lld:pubmed |
pubmed-article:21288996 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:21288996 | pubmed:volume | 18 | lld:pubmed |
pubmed-article:21288996 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:21288996 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:21288996 | pubmed:pagination | 647-54 | lld:pubmed |
pubmed-article:21288996 | pubmed:dateRevised | 2011-10-3 | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:meshHeading | pubmed-meshheading:21288996... | lld:pubmed |
pubmed-article:21288996 | pubmed:year | 2011 | lld:pubmed |
pubmed-article:21288996 | pubmed:articleTitle | Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity. | lld:pubmed |
pubmed-article:21288996 | pubmed:affiliation | Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA. | lld:pubmed |
pubmed-article:21288996 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:21288996 | pubmed:publicationType | Research Support, N.I.H., Extramural | lld:pubmed |