pubmed-article:21281601 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C0044602 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C0285761 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C1368105 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C1451005 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C1705325 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C0004561 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C0242606 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C0038952 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C0332157 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C0017262 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C1150481 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C1415020 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C1704259 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C1705987 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C2587213 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C0851285 | lld:lifeskim |
pubmed-article:21281601 | lifeskim:mentions | umls-concept:C1879547 | lld:lifeskim |
pubmed-article:21281601 | pubmed:issue | 4 | lld:pubmed |
pubmed-article:21281601 | pubmed:dateCreated | 2011-2-28 | lld:pubmed |
pubmed-article:21281601 | pubmed:abstractText | Histone acetyltransferase(s) (HATs) are involved in the acetylation of core histones, which is an important event for transcription regulation through alterations in the chromatin structure in eukaryotes. General control non-depressible 5 (GCN5) was first identified as a global coactivator and transcription-related HAT. Here we report that GCN5 regulates the activation of phosphatidylinositol 3-kinase (PI3K)/acutely transforming retrovirus AKT8 in rodent T cell lymphoma (Akt) survival pathway in B cells exposed to oxidative stress via controlling gene expressions of spleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (Btk). The GCN5-deficiency remarkably caused apoptotic cell death by treatment with exogenous hydrogen peroxide (H(2)O(2)) in chicken DT40 cells. In GCN5-deficient DT40 cells, gene expressions of Syk and Btk, which are involved in activation of PI3K/Akt survival pathway in DT40 cells exposed to exogenous H(2)O(2), were remarkably decreased compared with those in wild type DT40 cells. In addition, phosphorylation of Akt in H(2)O(2)-treated GCN5-deficient cells was remarkably suppressed as compared to that of DT40. Chromatin immunoprecipitation assay revealed that GCN5 binds to proximal 5'-upstream regions of Syk and Btk genes in vivo. These results suggest that GCN5 takes part in transcriptional regulations of the Syk and Btk genes, and plays a key role in epigenetic regulation of PI3K/Akt survival pathway in B cells exposed to reactive oxygen species such as H(2)O(2). | lld:pubmed |
pubmed-article:21281601 | pubmed:language | eng | lld:pubmed |
pubmed-article:21281601 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21281601 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:21281601 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21281601 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21281601 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21281601 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21281601 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21281601 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21281601 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21281601 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21281601 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21281601 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:21281601 | pubmed:month | Feb | lld:pubmed |
pubmed-article:21281601 | pubmed:issn | 1090-2104 | lld:pubmed |
pubmed-article:21281601 | pubmed:author | pubmed-author:Imajoh-OhmiSh... | lld:pubmed |
pubmed-article:21281601 | pubmed:author | pubmed-author:NakayamaTatsu... | lld:pubmed |
pubmed-article:21281601 | pubmed:author | pubmed-author:TakamiYasunar... | lld:pubmed |
pubmed-article:21281601 | pubmed:author | pubmed-author:KuribayashiFu... | lld:pubmed |
pubmed-article:21281601 | pubmed:author | pubmed-author:KikuchiHidehi... | lld:pubmed |
pubmed-article:21281601 | pubmed:copyrightInfo | Copyright © 2011 Elsevier Inc. All rights reserved. | lld:pubmed |
pubmed-article:21281601 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:21281601 | pubmed:day | 25 | lld:pubmed |
pubmed-article:21281601 | pubmed:volume | 405 | lld:pubmed |
pubmed-article:21281601 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:21281601 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:21281601 | pubmed:pagination | 657-61 | lld:pubmed |
pubmed-article:21281601 | pubmed:dateRevised | 2011-11-2 | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:meshHeading | pubmed-meshheading:21281601... | lld:pubmed |
pubmed-article:21281601 | pubmed:year | 2011 | lld:pubmed |
pubmed-article:21281601 | pubmed:articleTitle | GCN5 regulates the activation of PI3K/Akt survival pathway in B cells exposed to oxidative stress via controlling gene expressions of Syk and Btk. | lld:pubmed |
pubmed-article:21281601 | pubmed:affiliation | Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Miyazaki Medical College, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan. masakari@med.miyazaki-u.ac.jp | lld:pubmed |
pubmed-article:21281601 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:21281601 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
entrez-gene:428441 | entrezgene:pubmed | pubmed-article:21281601 | lld:entrezgene |
http://linkedlifedata.com/r... | entrezgene:pubmed | pubmed-article:21281601 | lld:entrezgene |