pubmed-article:21250544 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:21250544 | lifeskim:mentions | umls-concept:C0024530 | lld:lifeskim |
pubmed-article:21250544 | lifeskim:mentions | umls-concept:C0029246 | lld:lifeskim |
pubmed-article:21250544 | lifeskim:mentions | umls-concept:C0026584 | lld:lifeskim |
pubmed-article:21250544 | lifeskim:mentions | umls-concept:C0019397 | lld:lifeskim |
pubmed-article:21250544 | lifeskim:mentions | umls-concept:C0015219 | lld:lifeskim |
pubmed-article:21250544 | pubmed:issue | 10 | lld:pubmed |
pubmed-article:21250544 | pubmed:dateCreated | 2011-1-21 | lld:pubmed |
pubmed-article:21250544 | pubmed:abstractText | The African malaria mosquito Anopheles gambiae was the first disease vector chosen for genome sequencing. Although its genome assembly has been facilitated by physical mapping, large gaps still pose a serious problem for accurate annotation and genome analysis. The majority of the gaps are located in regions of pericentromeric and intercalary heterochromatin. Genomic analysis has identified protein-coding genes and various classes of repetitive elements in the Anopheles heterochromatin. Molecular and cytogenetic studies have demonstrated that heterochromatin is a structurally heterogeneous and rapidly evolving part of the malaria mosquito genome. | lld:pubmed |
pubmed-article:21250544 | pubmed:language | eng | lld:pubmed |
pubmed-article:21250544 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21250544 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:21250544 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21250544 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:21250544 | pubmed:month | Oct | lld:pubmed |
pubmed-article:21250544 | pubmed:issn | 0016-6758 | lld:pubmed |
pubmed-article:21250544 | pubmed:author | pubmed-author:SharakhovaM... | lld:pubmed |
pubmed-article:21250544 | pubmed:author | pubmed-author:SharakhovI... | lld:pubmed |
pubmed-article:21250544 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:21250544 | pubmed:volume | 46 | lld:pubmed |
pubmed-article:21250544 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:21250544 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:21250544 | pubmed:pagination | 1417-20 | lld:pubmed |
pubmed-article:21250544 | pubmed:meshHeading | pubmed-meshheading:21250544... | lld:pubmed |
pubmed-article:21250544 | pubmed:meshHeading | pubmed-meshheading:21250544... | lld:pubmed |
pubmed-article:21250544 | pubmed:meshHeading | pubmed-meshheading:21250544... | lld:pubmed |
pubmed-article:21250544 | pubmed:meshHeading | pubmed-meshheading:21250544... | lld:pubmed |
pubmed-article:21250544 | pubmed:meshHeading | pubmed-meshheading:21250544... | lld:pubmed |
pubmed-article:21250544 | pubmed:meshHeading | pubmed-meshheading:21250544... | lld:pubmed |
pubmed-article:21250544 | pubmed:year | 2010 | lld:pubmed |
pubmed-article:21250544 | pubmed:articleTitle | Organization and evolution of heterochromatin in malaria mosquitoes. | lld:pubmed |
pubmed-article:21250544 | pubmed:affiliation | Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA. msharakh@vt.edu | lld:pubmed |
pubmed-article:21250544 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:21250544 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |