Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21212469rdf:typepubmed:Citationlld:pubmed
pubmed-article:21212469lifeskim:mentionsumls-concept:C0087111lld:lifeskim
pubmed-article:21212469lifeskim:mentionsumls-concept:C0018213lld:lifeskim
pubmed-article:21212469lifeskim:mentionsumls-concept:C0242485lld:lifeskim
pubmed-article:21212469lifeskim:mentionsumls-concept:C0178602lld:lifeskim
pubmed-article:21212469lifeskim:mentionsumls-concept:C0441655lld:lifeskim
pubmed-article:21212469lifeskim:mentionsumls-concept:C0449243lld:lifeskim
pubmed-article:21212469lifeskim:mentionsumls-concept:C2698651lld:lifeskim
pubmed-article:21212469lifeskim:mentionsumls-concept:C0443131lld:lifeskim
pubmed-article:21212469pubmed:issue3lld:pubmed
pubmed-article:21212469pubmed:dateCreated2011-1-18lld:pubmed
pubmed-article:21212469pubmed:abstractTextCalculation of the therapeutic activity of radioiodine (131)I for individualized dosimetry in the treatment of Graves' disease requires an accurate estimate of the thyroid absorbed radiation dose based on a tracer activity administration of (131)I. Common approaches (Marinelli-Quimby formula, MIRD algorithm) use, respectively, the effective half-life of radioiodine in the thyroid and the time-integrated activity. Many physicians perform one, two, or at most three tracer dose activity measurements at various times and calculate the required therapeutic activity by ad hoc methods. In this paper, we study the accuracy of estimates of four 'target variables': time-integrated activity coefficient, time of maximum activity, maximum activity, and effective half-life in the gland. Clinical data from 41 patients who underwent (131)I therapy for Graves' disease at the University Hospital in Pisa, Italy, are used for analysis. The radioiodine kinetics are described using a nonlinear mixed-effects model. The distributions of the target variables in the patient population are characterized. Using minimum root mean squared error as the criterion, optimal 1-, 2-, and 3-point sampling schedules are determined for estimation of the target variables, and probabilistic bounds are given for the errors under the optimal times. An algorithm is developed for computing the optimal 1-, 2-, and 3-point sampling schedules for the target variables. This algorithm is implemented in a freely available software tool. Taking into consideration (131)I effective half-life in the thyroid and measurement noise, the optimal 1-point time for time-integrated activity coefficient is a measurement 1 week following the tracer dose. Additional measurements give only a slight improvement in accuracy.lld:pubmed
pubmed-article:21212469pubmed:languageenglld:pubmed
pubmed-article:21212469pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21212469pubmed:citationSubsetIMlld:pubmed
pubmed-article:21212469pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21212469pubmed:statusMEDLINElld:pubmed
pubmed-article:21212469pubmed:monthFeblld:pubmed
pubmed-article:21212469pubmed:issn1361-6560lld:pubmed
pubmed-article:21212469pubmed:authorpubmed-author:HorowitzJJlld:pubmed
pubmed-article:21212469pubmed:authorpubmed-author:MerrillSSlld:pubmed
pubmed-article:21212469pubmed:authorpubmed-author:ChipkinS RSRlld:pubmed
pubmed-article:21212469pubmed:authorpubmed-author:TrainoA CAClld:pubmed
pubmed-article:21212469pubmed:authorpubmed-author:ChaitYYlld:pubmed
pubmed-article:21212469pubmed:authorpubmed-author:HollotC VCVlld:pubmed
pubmed-article:21212469pubmed:issnTypeElectroniclld:pubmed
pubmed-article:21212469pubmed:day7lld:pubmed
pubmed-article:21212469pubmed:volume56lld:pubmed
pubmed-article:21212469pubmed:ownerNLMlld:pubmed
pubmed-article:21212469pubmed:authorsCompleteYlld:pubmed
pubmed-article:21212469pubmed:pagination557-71lld:pubmed
pubmed-article:21212469pubmed:meshHeadingpubmed-meshheading:21212469...lld:pubmed
pubmed-article:21212469pubmed:meshHeadingpubmed-meshheading:21212469...lld:pubmed
pubmed-article:21212469pubmed:meshHeadingpubmed-meshheading:21212469...lld:pubmed
pubmed-article:21212469pubmed:meshHeadingpubmed-meshheading:21212469...lld:pubmed
pubmed-article:21212469pubmed:meshHeadingpubmed-meshheading:21212469...lld:pubmed
pubmed-article:21212469pubmed:meshHeadingpubmed-meshheading:21212469...lld:pubmed
pubmed-article:21212469pubmed:meshHeadingpubmed-meshheading:21212469...lld:pubmed
pubmed-article:21212469pubmed:meshHeadingpubmed-meshheading:21212469...lld:pubmed
pubmed-article:21212469pubmed:meshHeadingpubmed-meshheading:21212469...lld:pubmed
pubmed-article:21212469pubmed:meshHeadingpubmed-meshheading:21212469...lld:pubmed
pubmed-article:21212469pubmed:year2011lld:pubmed
pubmed-article:21212469pubmed:articleTitleAccuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves' disease.lld:pubmed
pubmed-article:21212469pubmed:affiliationDepartment of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA.lld:pubmed
pubmed-article:21212469pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:21212469pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed