pubmed-article:2100691 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:2100691 | lifeskim:mentions | umls-concept:C0017337 | lld:lifeskim |
pubmed-article:2100691 | lifeskim:mentions | umls-concept:C0678594 | lld:lifeskim |
pubmed-article:2100691 | lifeskim:mentions | umls-concept:C0851285 | lld:lifeskim |
pubmed-article:2100691 | pubmed:issue | 4 | lld:pubmed |
pubmed-article:2100691 | pubmed:dateCreated | 1991-8-27 | lld:pubmed |
pubmed-article:2100691 | pubmed:abstractText | The structural features necessary for the efficient functioning of the LDL receptor are beginning to emerge from investigation of naturally-occurring and artificially-produced mutations in the gene. Six of the seven repeated sequences in the highly-structured NH2-terminal region are needed for optimal binding of LDL and some of the detailed requirements have been elucidated. The membrane-spanning region is required for insertion of the protein into the plasma membrane, and the cytoplasmic region for internalisation and self-association. Many apparently unrelated mutations affect receptor processing in the Golgi and the role of the carbohydrate chains remains obscure. The main means of regulating LDL-receptor activity is through repression of gene transcription by sterols. This requires a specific element in the promoter region and probably involves more than one transcription factor. Independent effects could be achieved by modulating the activity of these factors. | lld:pubmed |
pubmed-article:2100691 | pubmed:language | eng | lld:pubmed |
pubmed-article:2100691 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2100691 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:2100691 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2100691 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:2100691 | pubmed:month | Oct | lld:pubmed |
pubmed-article:2100691 | pubmed:issn | 0007-1420 | lld:pubmed |
pubmed-article:2100691 | pubmed:author | pubmed-author:KnightB LBL | lld:pubmed |
pubmed-article:2100691 | pubmed:author | pubmed-author:SoutarA KAK | lld:pubmed |
pubmed-article:2100691 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:2100691 | pubmed:volume | 46 | lld:pubmed |
pubmed-article:2100691 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:2100691 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:2100691 | pubmed:pagination | 891-916 | lld:pubmed |
pubmed-article:2100691 | pubmed:dateRevised | 2005-11-16 | lld:pubmed |
pubmed-article:2100691 | pubmed:meshHeading | pubmed-meshheading:2100691-... | lld:pubmed |
pubmed-article:2100691 | pubmed:meshHeading | pubmed-meshheading:2100691-... | lld:pubmed |
pubmed-article:2100691 | pubmed:meshHeading | pubmed-meshheading:2100691-... | lld:pubmed |
pubmed-article:2100691 | pubmed:meshHeading | pubmed-meshheading:2100691-... | lld:pubmed |
pubmed-article:2100691 | pubmed:meshHeading | pubmed-meshheading:2100691-... | lld:pubmed |
pubmed-article:2100691 | pubmed:year | 1990 | lld:pubmed |
pubmed-article:2100691 | pubmed:articleTitle | Structure and regulation of the LDL-receptor and its gene. | lld:pubmed |
pubmed-article:2100691 | pubmed:affiliation | MRC Lipoprotein Team, Hammersmith Hospital, London, UK. | lld:pubmed |
pubmed-article:2100691 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:2100691 | pubmed:publicationType | Review | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2100691 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2100691 | lld:pubmed |