Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20950040rdf:typepubmed:Citationlld:pubmed
pubmed-article:20950040lifeskim:mentionsumls-concept:C1545149lld:lifeskim
pubmed-article:20950040lifeskim:mentionsumls-concept:C0185125lld:lifeskim
pubmed-article:20950040pubmed:issue14lld:pubmed
pubmed-article:20950040pubmed:dateCreated2010-10-18lld:pubmed
pubmed-article:20950040pubmed:abstractTextIn this paper we evaluate the rotational viscosity and the two spin viscosities for liquid water using equilibrium molecular dynamics. Water is modeled via the flexible SPC/Fw model where the Coulomb interactions are calculated via the Wolf method which enables the long simulation times required. We find that the rotational viscosity is independent of the temperature in the range from 284 to 319 K. The two spin viscosities, on the other hand, decrease with increasing temperature and are found to be two orders of magnitude larger than that estimated by Bonthuis et al. [Phys. Rev. Lett. 103, 144503 (2009)] We apply the results from molecular dynamics simulations to the extended Navier-Stokes equations that include the coupling between intrinsic angular momentum and linear momentum. For a flow driven by an external field the coupling will reduce the flow rate significantly for nanoscale geometries. The coupling also enables conversion of rotational electrical energy into fluid linear momentum and we find that in order to obtain measurable flow rates the electrical field strength must be in the order of 0.1?MV?m(-1) and rotate with a frequency of more than 100 MHz.lld:pubmed
pubmed-article:20950040pubmed:languageenglld:pubmed
pubmed-article:20950040pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20950040pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:20950040pubmed:monthOctlld:pubmed
pubmed-article:20950040pubmed:issn1089-7690lld:pubmed
pubmed-article:20950040pubmed:authorpubmed-author:HansenJ SJSlld:pubmed
pubmed-article:20950040pubmed:authorpubmed-author:ToddB DBDlld:pubmed
pubmed-article:20950040pubmed:authorpubmed-author:BruusHenrikHlld:pubmed
pubmed-article:20950040pubmed:authorpubmed-author:DaivisPeter...lld:pubmed
pubmed-article:20950040pubmed:issnTypeElectroniclld:pubmed
pubmed-article:20950040pubmed:day14lld:pubmed
pubmed-article:20950040pubmed:volume133lld:pubmed
pubmed-article:20950040pubmed:ownerNLMlld:pubmed
pubmed-article:20950040pubmed:authorsCompleteYlld:pubmed
pubmed-article:20950040pubmed:pagination144906lld:pubmed
pubmed-article:20950040pubmed:year2010lld:pubmed
pubmed-article:20950040pubmed:articleTitleRotational and spin viscosities of water: Application to nanofluidics.lld:pubmed
pubmed-article:20950040pubmed:affiliationDepartment of Sciences, DNRF Centre Glass and Time IMFUFA, Roskilde University, P.O. Box 260, Roskilde DK-4000, Denmark. jesperschmidthansen@gmail.comlld:pubmed
pubmed-article:20950040pubmed:publicationTypeJournal Articlelld:pubmed