pubmed-article:20941125 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:20941125 | lifeskim:mentions | umls-concept:C0444626 | lld:lifeskim |
pubmed-article:20941125 | lifeskim:mentions | umls-concept:C1328817 | lld:lifeskim |
pubmed-article:20941125 | lifeskim:mentions | umls-concept:C0231881 | lld:lifeskim |
pubmed-article:20941125 | lifeskim:mentions | umls-concept:C2587213 | lld:lifeskim |
pubmed-article:20941125 | lifeskim:mentions | umls-concept:C0449445 | lld:lifeskim |
pubmed-article:20941125 | pubmed:issue | 21 | lld:pubmed |
pubmed-article:20941125 | pubmed:dateCreated | 2010-10-13 | lld:pubmed |
pubmed-article:20941125 | pubmed:abstractText | Control of photonic crystal resonances in conjunction with large spectral shifting is critical in achieving reconfigurable photonic crystal devices. We propose a simple approach to achieve nano-mechanical control of photonic crystal resonances within a compact integrated on-chip approach. Three different tip designs utilizing an in-plane nano-mechanical tuning approach are shown to achieve reversible and low-loss resonance control on a one-dimensional photonic crystal nanocavity. The proposed nano-mechanical approach driven by a sub-micron micro-electromechanical system integrated on low loss suspended feeding nanowire waveguide, achieved relatively large resonance spectral shifts of up to 18 nm at a driving voltage of 25 V. Such designs may potentially be used as tunable optical filters or switches. | lld:pubmed |
pubmed-article:20941125 | pubmed:language | eng | lld:pubmed |
pubmed-article:20941125 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20941125 | pubmed:status | PubMed-not-MEDLINE | lld:pubmed |
pubmed-article:20941125 | pubmed:month | Oct | lld:pubmed |
pubmed-article:20941125 | pubmed:issn | 1094-4087 | lld:pubmed |
pubmed-article:20941125 | pubmed:author | pubmed-author:YuHongbinH | lld:pubmed |
pubmed-article:20941125 | pubmed:author | pubmed-author:DengJieJ | lld:pubmed |
pubmed-article:20941125 | pubmed:author | pubmed-author:ChauFook... | lld:pubmed |
pubmed-article:20941125 | pubmed:author | pubmed-author:ZhouGuangyaG | lld:pubmed |
pubmed-article:20941125 | pubmed:author | pubmed-author:TangXiaosongX | lld:pubmed |
pubmed-article:20941125 | pubmed:author | pubmed-author:ChewXiongyeuX | lld:pubmed |
pubmed-article:20941125 | pubmed:author | pubmed-author:LokeYee... | lld:pubmed |
pubmed-article:20941125 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:20941125 | pubmed:day | 11 | lld:pubmed |
pubmed-article:20941125 | pubmed:volume | 18 | lld:pubmed |
pubmed-article:20941125 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:20941125 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:20941125 | pubmed:pagination | 22232-44 | lld:pubmed |
pubmed-article:20941125 | pubmed:year | 2010 | lld:pubmed |
pubmed-article:20941125 | pubmed:articleTitle | An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities. | lld:pubmed |
pubmed-article:20941125 | pubmed:affiliation | 1Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576 Singapore. | lld:pubmed |
pubmed-article:20941125 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:20941125 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |