Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20884360rdf:typepubmed:Citationlld:pubmed
pubmed-article:20884360lifeskim:mentionsumls-concept:C0750572lld:lifeskim
pubmed-article:20884360lifeskim:mentionsumls-concept:C0439064lld:lifeskim
pubmed-article:20884360lifeskim:mentionsumls-concept:C1707455lld:lifeskim
pubmed-article:20884360lifeskim:mentionsumls-concept:C0024489lld:lifeskim
pubmed-article:20884360lifeskim:mentionsumls-concept:C0936012lld:lifeskim
pubmed-article:20884360lifeskim:mentionsumls-concept:C1524031lld:lifeskim
pubmed-article:20884360lifeskim:mentionsumls-concept:C2699488lld:lifeskim
pubmed-article:20884360lifeskim:mentionsumls-concept:C0699680lld:lifeskim
pubmed-article:20884360pubmed:issue3lld:pubmed
pubmed-article:20884360pubmed:dateCreated2010-12-21lld:pubmed
pubmed-article:20884360pubmed:abstractTextNoise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17 subjects in a real experiment, including individual noise covariance matrices and head geometries. We confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating that all three methods may greatly underestimate some sources relative to others. The reliability of differences between methods across subjects was demonstrated using distributions of standard deviations and p-values from paired t-tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the general resolution limits of the inverse problem. This means that noise-normalization is of no consequence where linear estimation procedures are used as "spatial filters." While low DLE is advantageous for the localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex source distributions is not obvious. We suggest that software packages for source estimation should include comprehensive tools for evaluating the performance of different methods.lld:pubmed
pubmed-article:20884360pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:languageenglld:pubmed
pubmed-article:20884360pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884360pubmed:citationSubsetIMlld:pubmed
pubmed-article:20884360pubmed:statusMEDLINElld:pubmed
pubmed-article:20884360pubmed:monthFeblld:pubmed
pubmed-article:20884360pubmed:issn1095-9572lld:pubmed
pubmed-article:20884360pubmed:authorpubmed-author:HaukOlafOlld:pubmed
pubmed-article:20884360pubmed:authorpubmed-author:HensonRichard...lld:pubmed
pubmed-article:20884360pubmed:authorpubmed-author:WakemanDaniel...lld:pubmed
pubmed-article:20884360pubmed:copyrightInfoCopyright © 2010 Elsevier Inc. All rights reserved.lld:pubmed
pubmed-article:20884360pubmed:issnTypeElectroniclld:pubmed
pubmed-article:20884360pubmed:day1lld:pubmed
pubmed-article:20884360pubmed:volume54lld:pubmed
pubmed-article:20884360pubmed:ownerNLMlld:pubmed
pubmed-article:20884360pubmed:authorsCompleteYlld:pubmed
pubmed-article:20884360pubmed:pagination1966-74lld:pubmed
pubmed-article:20884360pubmed:dateRevised2011-7-25lld:pubmed
pubmed-article:20884360pubmed:meshHeadingpubmed-meshheading:20884360...lld:pubmed
pubmed-article:20884360pubmed:meshHeadingpubmed-meshheading:20884360...lld:pubmed
pubmed-article:20884360pubmed:meshHeadingpubmed-meshheading:20884360...lld:pubmed
pubmed-article:20884360pubmed:meshHeadingpubmed-meshheading:20884360...lld:pubmed
pubmed-article:20884360pubmed:meshHeadingpubmed-meshheading:20884360...lld:pubmed
pubmed-article:20884360pubmed:meshHeadingpubmed-meshheading:20884360...lld:pubmed
pubmed-article:20884360pubmed:meshHeadingpubmed-meshheading:20884360...lld:pubmed
pubmed-article:20884360pubmed:meshHeadingpubmed-meshheading:20884360...lld:pubmed
pubmed-article:20884360pubmed:meshHeadingpubmed-meshheading:20884360...lld:pubmed
pubmed-article:20884360pubmed:meshHeadingpubmed-meshheading:20884360...lld:pubmed
pubmed-article:20884360pubmed:meshHeadingpubmed-meshheading:20884360...lld:pubmed
pubmed-article:20884360pubmed:meshHeadingpubmed-meshheading:20884360...lld:pubmed
pubmed-article:20884360pubmed:year2011lld:pubmed
pubmed-article:20884360pubmed:articleTitleComparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics.lld:pubmed
pubmed-article:20884360pubmed:affiliationCognition and Brain Sciences Unit, Medical Research Council, Cambridge, UK. olaf.hauk@mrc-cbu.cam.ac.uklld:pubmed
pubmed-article:20884360pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:20884360pubmed:publicationTypeComparative Studylld:pubmed
pubmed-article:20884360pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed