Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20884354rdf:typepubmed:Citationlld:pubmed
pubmed-article:20884354lifeskim:mentionsumls-concept:C0026339lld:lifeskim
pubmed-article:20884354lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:20884354lifeskim:mentionsumls-concept:C1704675lld:lifeskim
pubmed-article:20884354lifeskim:mentionsumls-concept:C0376335lld:lifeskim
pubmed-article:20884354pubmed:issue2lld:pubmed
pubmed-article:20884354pubmed:dateCreated2010-12-3lld:pubmed
pubmed-article:20884354pubmed:abstractTextAnalysis of dynamical interactions between distributed brain areas is of fundamental importance for understanding cognitive information processing. However, estimating dynamic causal interactions between brain regions using functional magnetic resonance imaging (fMRI) poses several unique challenges. For one, fMRI measures Blood Oxygenation Level Dependent (BOLD) signals, rather than the underlying latent neuronal activity. Second, regional variations in the hemodynamic response function (HRF) can significantly influence estimation of causal interactions between them. Third, causal interactions between brain regions can change with experimental context over time. To overcome these problems, we developed a novel state-space Multivariate Dynamical Systems (MDS) model to estimate intrinsic and experimentally-induced modulatory causal interactions between multiple brain regions. A probabilistic graphical framework is then used to estimate the parameters of MDS as applied to fMRI data. We show that MDS accurately takes into account regional variations in the HRF and estimates dynamic causal interactions at the level of latent signals. We develop and compare two estimation procedures using maximum likelihood estimation (MLE) and variational Bayesian (VB) approaches for inferring model parameters. Using extensive computer simulations, we demonstrate that, compared to Granger causal analysis (GCA), MDS exhibits superior performance for a wide range of signal to noise ratios (SNRs), sample length and network size. Our simulations also suggest that GCA fails to uncover causal interactions when there is a conflict between the direction of intrinsic and modulatory influences. Furthermore, we show that MDS estimation using VB methods is more robust and performs significantly better at low SNRs and shorter time series than MDS with MLE. Our study suggests that VB estimation of MDS provides a robust method for estimating and interpreting causal network interactions in fMRI data.lld:pubmed
pubmed-article:20884354pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884354pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884354pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884354pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884354pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884354pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884354pubmed:languageenglld:pubmed
pubmed-article:20884354pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20884354pubmed:citationSubsetIMlld:pubmed
pubmed-article:20884354pubmed:statusMEDLINElld:pubmed
pubmed-article:20884354pubmed:monthJanlld:pubmed
pubmed-article:20884354pubmed:issn1095-9572lld:pubmed
pubmed-article:20884354pubmed:authorpubmed-author:MenonVinodVlld:pubmed
pubmed-article:20884354pubmed:authorpubmed-author:SupekarKaustu...lld:pubmed
pubmed-article:20884354pubmed:authorpubmed-author:ChenTianwenTlld:pubmed
pubmed-article:20884354pubmed:authorpubmed-author:SrikanthRyali...lld:pubmed
pubmed-article:20884354pubmed:copyrightInfoCopyright © 2010 Elsevier Inc. All rights reserved.lld:pubmed
pubmed-article:20884354pubmed:issnTypeElectroniclld:pubmed
pubmed-article:20884354pubmed:day15lld:pubmed
pubmed-article:20884354pubmed:volume54lld:pubmed
pubmed-article:20884354pubmed:ownerNLMlld:pubmed
pubmed-article:20884354pubmed:authorsCompleteYlld:pubmed
pubmed-article:20884354pubmed:pagination807-23lld:pubmed
pubmed-article:20884354pubmed:dateRevised2011-10-6lld:pubmed
pubmed-article:20884354pubmed:meshHeadingpubmed-meshheading:20884354...lld:pubmed
pubmed-article:20884354pubmed:meshHeadingpubmed-meshheading:20884354...lld:pubmed
pubmed-article:20884354pubmed:meshHeadingpubmed-meshheading:20884354...lld:pubmed
pubmed-article:20884354pubmed:meshHeadingpubmed-meshheading:20884354...lld:pubmed
pubmed-article:20884354pubmed:meshHeadingpubmed-meshheading:20884354...lld:pubmed
pubmed-article:20884354pubmed:meshHeadingpubmed-meshheading:20884354...lld:pubmed
pubmed-article:20884354pubmed:meshHeadingpubmed-meshheading:20884354...lld:pubmed
pubmed-article:20884354pubmed:meshHeadingpubmed-meshheading:20884354...lld:pubmed
pubmed-article:20884354pubmed:year2011lld:pubmed
pubmed-article:20884354pubmed:articleTitleMultivariate dynamical systems models for estimating causal interactions in fMRI.lld:pubmed
pubmed-article:20884354pubmed:affiliationDepartment of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305-5778, USA. sryali@stanford.edulld:pubmed
pubmed-article:20884354pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:20884354pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed
pubmed-article:20884354pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed