Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20841784rdf:typepubmed:Citationlld:pubmed
pubmed-article:20841784lifeskim:mentionsumls-concept:C0034869lld:lifeskim
pubmed-article:20841784lifeskim:mentionsumls-concept:C0041755lld:lifeskim
pubmed-article:20841784lifeskim:mentionsumls-concept:C0185115lld:lifeskim
pubmed-article:20841784lifeskim:mentionsumls-concept:C0205210lld:lifeskim
pubmed-article:20841784pubmed:issuePt 1lld:pubmed
pubmed-article:20841784pubmed:dateCreated2010-9-15lld:pubmed
pubmed-article:20841784pubmed:abstractTextWith the rapidly growing use of electronic health records, the possibility of large-scale clinical information extraction has drawn much attention. We aim to extract adverse drug events and effects from records. As the first step of this challenge, this study assessed (1) how much adverse-effect information is contained in records, and (2) automatic extracting accuracy of the current standard Natural Language Processing (NLP) system. Results revealed that 7.7% of records include adverse event information, and that 59% of them (4.5% in total) can be extracted automatically. This result is particularly encouraging, considering the massive amounts of records, which are increasing daily.lld:pubmed
pubmed-article:20841784pubmed:languageenglld:pubmed
pubmed-article:20841784pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20841784pubmed:citationSubsetTlld:pubmed
pubmed-article:20841784pubmed:statusMEDLINElld:pubmed
pubmed-article:20841784pubmed:issn0926-9630lld:pubmed
pubmed-article:20841784pubmed:authorpubmed-author:OheKazuhikoKlld:pubmed
pubmed-article:20841784pubmed:authorpubmed-author:WakiKayoKlld:pubmed
pubmed-article:20841784pubmed:authorpubmed-author:AramakiEijiElld:pubmed
pubmed-article:20841784pubmed:authorpubmed-author:MiuraYasuhide...lld:pubmed
pubmed-article:20841784pubmed:authorpubmed-author:TonoikeMasats...lld:pubmed
pubmed-article:20841784pubmed:authorpubmed-author:OhkumaTomokoTlld:pubmed
pubmed-article:20841784pubmed:authorpubmed-author:MasuichiHiros...lld:pubmed
pubmed-article:20841784pubmed:issnTypePrintlld:pubmed
pubmed-article:20841784pubmed:volume160lld:pubmed
pubmed-article:20841784pubmed:ownerNLMlld:pubmed
pubmed-article:20841784pubmed:authorsCompleteYlld:pubmed
pubmed-article:20841784pubmed:pagination739-43lld:pubmed
pubmed-article:20841784pubmed:meshHeadingpubmed-meshheading:20841784...lld:pubmed
pubmed-article:20841784pubmed:meshHeadingpubmed-meshheading:20841784...lld:pubmed
pubmed-article:20841784pubmed:meshHeadingpubmed-meshheading:20841784...lld:pubmed
pubmed-article:20841784pubmed:meshHeadingpubmed-meshheading:20841784...lld:pubmed
pubmed-article:20841784pubmed:meshHeadingpubmed-meshheading:20841784...lld:pubmed
pubmed-article:20841784pubmed:meshHeadingpubmed-meshheading:20841784...lld:pubmed
pubmed-article:20841784pubmed:meshHeadingpubmed-meshheading:20841784...lld:pubmed
pubmed-article:20841784pubmed:meshHeadingpubmed-meshheading:20841784...lld:pubmed
pubmed-article:20841784pubmed:meshHeadingpubmed-meshheading:20841784...lld:pubmed
pubmed-article:20841784pubmed:year2010lld:pubmed
pubmed-article:20841784pubmed:articleTitleExtraction of adverse drug effects from clinical records.lld:pubmed
pubmed-article:20841784pubmed:affiliationCenter for Knowledge Structuring, University of Tokyo, University of Tokyo Hospital, Tokyo, Japan. eiji.aramaki@gmail.comlld:pubmed
pubmed-article:20841784pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:20841784pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed