Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20702397rdf:typepubmed:Citationlld:pubmed
pubmed-article:20702397lifeskim:mentionsumls-concept:C0026383lld:lifeskim
pubmed-article:20702397lifeskim:mentionsumls-concept:C1704922lld:lifeskim
pubmed-article:20702397lifeskim:mentionsumls-concept:C0026019lld:lifeskim
pubmed-article:20702397lifeskim:mentionsumls-concept:C0679201lld:lifeskim
pubmed-article:20702397lifeskim:mentionsumls-concept:C0456387lld:lifeskim
pubmed-article:20702397lifeskim:mentionsumls-concept:C0597177lld:lifeskim
pubmed-article:20702397lifeskim:mentionsumls-concept:C1510992lld:lifeskim
pubmed-article:20702397lifeskim:mentionsumls-concept:C0242198lld:lifeskim
pubmed-article:20702397lifeskim:mentionsumls-concept:C0205171lld:lifeskim
pubmed-article:20702397pubmed:issue19lld:pubmed
pubmed-article:20702397pubmed:dateCreated2010-9-24lld:pubmed
pubmed-article:20702397pubmed:abstractTextElectron cryo-microscopy can be used to infer 3D structures of large macromolecules with high resolution, but the large amounts of data captured necessitate the development of appropriate statistical models to describe the data generation process, and to perform structure inference. We present a new method for performing ab initio inference of the 3D structures of macromolecules from single particle electron cryo-microscopy experiments using class average images.lld:pubmed
pubmed-article:20702397pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20702397pubmed:languageenglld:pubmed
pubmed-article:20702397pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20702397pubmed:citationSubsetIMlld:pubmed
pubmed-article:20702397pubmed:statusMEDLINElld:pubmed
pubmed-article:20702397pubmed:monthOctlld:pubmed
pubmed-article:20702397pubmed:issn1367-4811lld:pubmed
pubmed-article:20702397pubmed:authorpubmed-author:RubinsteinJoh...lld:pubmed
pubmed-article:20702397pubmed:authorpubmed-author:LilienRyan...lld:pubmed
pubmed-article:20702397pubmed:authorpubmed-author:JaitlyNavdeep...lld:pubmed
pubmed-article:20702397pubmed:authorpubmed-author:BrubakerMarcu...lld:pubmed
pubmed-article:20702397pubmed:issnTypeElectroniclld:pubmed
pubmed-article:20702397pubmed:day1lld:pubmed
pubmed-article:20702397pubmed:volume26lld:pubmed
pubmed-article:20702397pubmed:ownerNLMlld:pubmed
pubmed-article:20702397pubmed:authorsCompleteYlld:pubmed
pubmed-article:20702397pubmed:pagination2406-15lld:pubmed
pubmed-article:20702397pubmed:meshHeadingpubmed-meshheading:20702397...lld:pubmed
pubmed-article:20702397pubmed:meshHeadingpubmed-meshheading:20702397...lld:pubmed
pubmed-article:20702397pubmed:meshHeadingpubmed-meshheading:20702397...lld:pubmed
pubmed-article:20702397pubmed:meshHeadingpubmed-meshheading:20702397...lld:pubmed
pubmed-article:20702397pubmed:year2010lld:pubmed
pubmed-article:20702397pubmed:articleTitleA Bayesian method for 3D macromolecular structure inference using class average images from single particle electron microscopy.lld:pubmed
pubmed-article:20702397pubmed:affiliationDepartment of Computer Science, University of Toronto, Toronto, ON, Canada. ndjaitly@cs.toronto.edulld:pubmed
pubmed-article:20702397pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:20702397pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed