Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20698637rdf:typepubmed:Citationlld:pubmed
pubmed-article:20698637lifeskim:mentionsumls-concept:C0026018lld:lifeskim
pubmed-article:20698637lifeskim:mentionsumls-concept:C0028158lld:lifeskim
pubmed-article:20698637lifeskim:mentionsumls-concept:C0057717lld:lifeskim
pubmed-article:20698637lifeskim:mentionsumls-concept:C1442792lld:lifeskim
pubmed-article:20698637lifeskim:mentionsumls-concept:C0205099lld:lifeskim
pubmed-article:20698637lifeskim:mentionsumls-concept:C2699488lld:lifeskim
pubmed-article:20698637lifeskim:mentionsumls-concept:C0333668lld:lifeskim
pubmed-article:20698637pubmed:issue8lld:pubmed
pubmed-article:20698637pubmed:dateCreated2010-8-11lld:pubmed
pubmed-article:20698637pubmed:abstractTextCurrent far-field optical nanoscopy schemes overcome the diffraction barrier by ensuring that adjacent features assume different states upon detection. Ideally, the transition between these states can be repeated endlessly and, if performed optically, with low levels of light. Here we report such optical switching, realized by pairing the luminescent triplet and a long-lived dark state of diamond color centers, enabling their imaging with a resolution >10 times beyond the diffraction barrier (<20 nm).lld:pubmed
pubmed-article:20698637pubmed:languageenglld:pubmed
pubmed-article:20698637pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20698637pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:20698637pubmed:monthAuglld:pubmed
pubmed-article:20698637pubmed:issn1530-6992lld:pubmed
pubmed-article:20698637pubmed:authorpubmed-author:HellStefan...lld:pubmed
pubmed-article:20698637pubmed:authorpubmed-author:EggelingChris...lld:pubmed
pubmed-article:20698637pubmed:authorpubmed-author:KimSeong...lld:pubmed
pubmed-article:20698637pubmed:authorpubmed-author:HanKyu...lld:pubmed
pubmed-article:20698637pubmed:issnTypeElectroniclld:pubmed
pubmed-article:20698637pubmed:day11lld:pubmed
pubmed-article:20698637pubmed:volume10lld:pubmed
pubmed-article:20698637pubmed:ownerNLMlld:pubmed
pubmed-article:20698637pubmed:authorsCompleteYlld:pubmed
pubmed-article:20698637pubmed:pagination3199-203lld:pubmed
pubmed-article:20698637pubmed:year2010lld:pubmed
pubmed-article:20698637pubmed:articleTitleMetastable dark States enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution.lld:pubmed
pubmed-article:20698637pubmed:affiliationDepartment of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany.lld:pubmed
pubmed-article:20698637pubmed:publicationTypeJournal Articlelld:pubmed