Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20619873rdf:typepubmed:Citationlld:pubmed
pubmed-article:20619873lifeskim:mentionsumls-concept:C0040682lld:lifeskim
pubmed-article:20619873lifeskim:mentionsumls-concept:C0302583lld:lifeskim
pubmed-article:20619873lifeskim:mentionsumls-concept:C0919414lld:lifeskim
pubmed-article:20619873lifeskim:mentionsumls-concept:C0311404lld:lifeskim
pubmed-article:20619873lifeskim:mentionsumls-concept:C1522240lld:lifeskim
pubmed-article:20619873lifeskim:mentionsumls-concept:C1450054lld:lifeskim
pubmed-article:20619873lifeskim:mentionsumls-concept:C1524063lld:lifeskim
pubmed-article:20619873lifeskim:mentionsumls-concept:C2698650lld:lifeskim
pubmed-article:20619873pubmed:issue1lld:pubmed
pubmed-article:20619873pubmed:dateCreated2010-8-30lld:pubmed
pubmed-article:20619873pubmed:abstractTextThe oxidation of organic compounds in oxygen saturated aqueous suspensions of nanoparticulate zero valent iron (nZVI) is rapidly becoming an area of important consideration for environmental scientists and engineers. Through the production of reactive oxygen species, oxidative processes do occur but have been shown to be of limited efficiency. To increase efficiency for this process, the addition of electron shuttling molecules have been shown to enhance the oxidative capacity of nZVI. Laboratory experiments were conducted at pH 3.0 over a range of nZVI starting concentrations, and the reaction was monitored by following the oxidation of HCOOH and the production of H(2)O(2) with time. These studies confirm that the addition of the polyoxometallates (POM), sodium polyoxotungstate (Na(3)PW(12)O(40)), enhances the oxidative capacity of nZVI. Based on these results, the mechanism for the enhancement in oxidative capacity of nZVI is through two separate processes: (1) the POM out-competes H(2)O(2) for electrons from Fe(0) thereby increasing the H(2)O(2) concentration, and (2) the reduced form of the POM, PW(12)O(40)(-4), facilitates the cycling of Fe(III) to Fe(II) which enhances the homogeneous Fenton reaction.lld:pubmed
pubmed-article:20619873pubmed:languageenglld:pubmed
pubmed-article:20619873pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20619873pubmed:citationSubsetIMlld:pubmed
pubmed-article:20619873pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20619873pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20619873pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20619873pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20619873pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20619873pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20619873pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20619873pubmed:statusMEDLINElld:pubmed
pubmed-article:20619873pubmed:monthSeplld:pubmed
pubmed-article:20619873pubmed:issn1879-1298lld:pubmed
pubmed-article:20619873pubmed:authorpubmed-author:ReusD HDHlld:pubmed
pubmed-article:20619873pubmed:authorpubmed-author:MylonSteven...lld:pubmed
pubmed-article:20619873pubmed:authorpubmed-author:WaiteT...lld:pubmed
pubmed-article:20619873pubmed:copyrightInfoCopyright (c) 2010 Elsevier Ltd. All rights reserved.lld:pubmed
pubmed-article:20619873pubmed:issnTypeElectroniclld:pubmed
pubmed-article:20619873pubmed:volume81lld:pubmed
pubmed-article:20619873pubmed:ownerNLMlld:pubmed
pubmed-article:20619873pubmed:authorsCompleteYlld:pubmed
pubmed-article:20619873pubmed:pagination127-31lld:pubmed
pubmed-article:20619873pubmed:meshHeadingpubmed-meshheading:20619873...lld:pubmed
pubmed-article:20619873pubmed:meshHeadingpubmed-meshheading:20619873...lld:pubmed
pubmed-article:20619873pubmed:meshHeadingpubmed-meshheading:20619873...lld:pubmed
pubmed-article:20619873pubmed:meshHeadingpubmed-meshheading:20619873...lld:pubmed
pubmed-article:20619873pubmed:meshHeadingpubmed-meshheading:20619873...lld:pubmed
pubmed-article:20619873pubmed:meshHeadingpubmed-meshheading:20619873...lld:pubmed
pubmed-article:20619873pubmed:meshHeadingpubmed-meshheading:20619873...lld:pubmed
pubmed-article:20619873pubmed:meshHeadingpubmed-meshheading:20619873...lld:pubmed
pubmed-article:20619873pubmed:meshHeadingpubmed-meshheading:20619873...lld:pubmed
pubmed-article:20619873pubmed:meshHeadingpubmed-meshheading:20619873...lld:pubmed
pubmed-article:20619873pubmed:year2010lld:pubmed
pubmed-article:20619873pubmed:articleTitleProcess optimization in use of zero valent iron nanoparticles for oxidative transformations.lld:pubmed
pubmed-article:20619873pubmed:affiliationDepartment of Chemistry, Lafayette College, Easton, PA 18042, United States.lld:pubmed
pubmed-article:20619873pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:20619873pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed