Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20616401rdf:typepubmed:Citationlld:pubmed
pubmed-article:20616401lifeskim:mentionsumls-concept:C1710082lld:lifeskim
pubmed-article:20616401lifeskim:mentionsumls-concept:C0024485lld:lifeskim
pubmed-article:20616401lifeskim:mentionsumls-concept:C0552449lld:lifeskim
pubmed-article:20616401lifeskim:mentionsumls-concept:C0812409lld:lifeskim
pubmed-article:20616401lifeskim:mentionsumls-concept:C1552871lld:lifeskim
pubmed-article:20616401lifeskim:mentionsumls-concept:C2828393lld:lifeskim
pubmed-article:20616401lifeskim:mentionsumls-concept:C1655045lld:lifeskim
pubmed-article:20616401pubmed:issue15lld:pubmed
pubmed-article:20616401pubmed:dateCreated2010-7-21lld:pubmed
pubmed-article:20616401pubmed:abstractTextThe Ernst equation for Fourier transform nuclear magnetic resonance (MR) describes the spoiled steady-state signal created by periodic partial excitation. In MR imaging (MRI), it is commonly applied to spoiled gradient-echo acquisition in the steady state, created by a small flip angle alpha at a repetition time TR much shorter than the longitudinal relaxation time T(1). We describe two parameter transformations of alpha and TR/T(1), which render the Ernst equation as a low-order rational function. Computer algebra can be readily applied for analytically solving protocol optimization, as shown for the dual flip angle experiment. These transformations are based on the half-angle tangent substitution and its hyperbolic analogue. They are monotonic and approach identity for small alpha and small TR/T(1) with a third-order error. Thus, the exact algebraization can be readily applied to fast gradient echo MRI to yield a rational approximation in alpha and TR/T(1). This reveals a fundamental relationship between the square of the flip angle and TR/T(1) which characterizes the Ernst angle, constant degree of T(1)-weighting and the influence of the local radio-frequency field.lld:pubmed
pubmed-article:20616401pubmed:languageenglld:pubmed
pubmed-article:20616401pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20616401pubmed:citationSubsetIMlld:pubmed
pubmed-article:20616401pubmed:statusMEDLINElld:pubmed
pubmed-article:20616401pubmed:monthAuglld:pubmed
pubmed-article:20616401pubmed:issn1361-6560lld:pubmed
pubmed-article:20616401pubmed:authorpubmed-author:DatheHenningHlld:pubmed
pubmed-article:20616401pubmed:authorpubmed-author:HelmsGuntherGlld:pubmed
pubmed-article:20616401pubmed:issnTypeElectroniclld:pubmed
pubmed-article:20616401pubmed:day7lld:pubmed
pubmed-article:20616401pubmed:volume55lld:pubmed
pubmed-article:20616401pubmed:ownerNLMlld:pubmed
pubmed-article:20616401pubmed:authorsCompleteYlld:pubmed
pubmed-article:20616401pubmed:pagination4231-45lld:pubmed
pubmed-article:20616401pubmed:meshHeadingpubmed-meshheading:20616401...lld:pubmed
pubmed-article:20616401pubmed:meshHeadingpubmed-meshheading:20616401...lld:pubmed
pubmed-article:20616401pubmed:meshHeadingpubmed-meshheading:20616401...lld:pubmed
pubmed-article:20616401pubmed:year2010lld:pubmed
pubmed-article:20616401pubmed:articleTitleExact algebraization of the signal equation of spoiled gradient echo MRI.lld:pubmed
pubmed-article:20616401pubmed:affiliationDepartment of Orthodontics, Biomechanics Group, University Medical Centre, Göttingen, Germany.lld:pubmed
pubmed-article:20616401pubmed:publicationTypeJournal Articlelld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:20616401lld:pubmed