pubmed-article:20575011 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:20575011 | lifeskim:mentions | umls-concept:C0025914 | lld:lifeskim |
pubmed-article:20575011 | lifeskim:mentions | umls-concept:C0001457 | lld:lifeskim |
pubmed-article:20575011 | lifeskim:mentions | umls-concept:C0007382 | lld:lifeskim |
pubmed-article:20575011 | lifeskim:mentions | umls-concept:C0039778 | lld:lifeskim |
pubmed-article:20575011 | lifeskim:mentions | umls-concept:C0441712 | lld:lifeskim |
pubmed-article:20575011 | pubmed:issue | 12 | lld:pubmed |
pubmed-article:20575011 | pubmed:dateCreated | 2010-6-29 | lld:pubmed |
pubmed-article:20575011 | pubmed:abstractText | The catalytic mechanism of Mus musculus adenosine deaminase (ADA) has been studied by quantum mechanics and two-layered ONIOM calculations. Our calculations show that the previously proposed mechanism, involving His238 as the general base to activate the Zn-bound water, has a high activation barrier of about 28 kcal/mol at the proposed rate-determining nucleophilic addition step, and the corresponding calculated kinetic isotope effects are significantly different from the recent experimental observations. We propose a revised mechanism based on calculations, in which Glu217 serves as the general base to abstract the proton of the Zn-bound water, and the protonated Glu217 then activates the substrate for the subsequent nucleophilic addition. The rate-determining step is the proton transfer from Zn-OH to 6-NH(2) of the tetrahedral intermediate, in which His238 serves as a proton shuttle for the proton transfer. The calculated kinetic isotope effects agree well with the experimental data, and calculated activation energy is also consistent with the experimental reaction rate. | lld:pubmed |
pubmed-article:20575011 | pubmed:language | eng | lld:pubmed |
pubmed-article:20575011 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20575011 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:20575011 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20575011 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20575011 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20575011 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20575011 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20575011 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:20575011 | pubmed:month | Sep | lld:pubmed |
pubmed-article:20575011 | pubmed:issn | 1096-987X | lld:pubmed |
pubmed-article:20575011 | pubmed:author | pubmed-author:WuYun-DongYD | lld:pubmed |
pubmed-article:20575011 | pubmed:author | pubmed-author:ZouGuo-LinGL | lld:pubmed |
pubmed-article:20575011 | pubmed:author | pubmed-author:QuanJun-MinJM | lld:pubmed |
pubmed-article:20575011 | pubmed:author | pubmed-author:WuXian-HuiXH | lld:pubmed |
pubmed-article:20575011 | pubmed:copyrightInfo | Copyright 2010 Wiley Periodicals, Inc. | lld:pubmed |
pubmed-article:20575011 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:20575011 | pubmed:volume | 31 | lld:pubmed |
pubmed-article:20575011 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:20575011 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:20575011 | pubmed:pagination | 2238-47 | lld:pubmed |
pubmed-article:20575011 | pubmed:meshHeading | pubmed-meshheading:20575011... | lld:pubmed |
pubmed-article:20575011 | pubmed:meshHeading | pubmed-meshheading:20575011... | lld:pubmed |
pubmed-article:20575011 | pubmed:meshHeading | pubmed-meshheading:20575011... | lld:pubmed |
pubmed-article:20575011 | pubmed:meshHeading | pubmed-meshheading:20575011... | lld:pubmed |
pubmed-article:20575011 | pubmed:meshHeading | pubmed-meshheading:20575011... | lld:pubmed |
pubmed-article:20575011 | pubmed:meshHeading | pubmed-meshheading:20575011... | lld:pubmed |
pubmed-article:20575011 | pubmed:meshHeading | pubmed-meshheading:20575011... | lld:pubmed |
pubmed-article:20575011 | pubmed:meshHeading | pubmed-meshheading:20575011... | lld:pubmed |
pubmed-article:20575011 | pubmed:meshHeading | pubmed-meshheading:20575011... | lld:pubmed |
pubmed-article:20575011 | pubmed:meshHeading | pubmed-meshheading:20575011... | lld:pubmed |
pubmed-article:20575011 | pubmed:meshHeading | pubmed-meshheading:20575011... | lld:pubmed |
pubmed-article:20575011 | pubmed:meshHeading | pubmed-meshheading:20575011... | lld:pubmed |
pubmed-article:20575011 | pubmed:meshHeading | pubmed-meshheading:20575011... | lld:pubmed |
pubmed-article:20575011 | pubmed:meshHeading | pubmed-meshheading:20575011... | lld:pubmed |
pubmed-article:20575011 | pubmed:year | 2010 | lld:pubmed |
pubmed-article:20575011 | pubmed:articleTitle | A theoretical study on the catalytic mechanism of Mus musculus adenosine deaminase. | lld:pubmed |
pubmed-article:20575011 | pubmed:affiliation | State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China. | lld:pubmed |
pubmed-article:20575011 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:20575011 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
entrez-gene:11486 | entrezgene:pubmed | pubmed-article:20575011 | lld:entrezgene |
http://linkedlifedata.com/r... | entrezgene:pubmed | pubmed-article:20575011 | lld:entrezgene |