pubmed-article:20430811 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:20430811 | lifeskim:mentions | umls-concept:C0085491 | lld:lifeskim |
pubmed-article:20430811 | lifeskim:mentions | umls-concept:C0030958 | lld:lifeskim |
pubmed-article:20430811 | lifeskim:mentions | umls-concept:C0597979 | lld:lifeskim |
pubmed-article:20430811 | lifeskim:mentions | umls-concept:C0486616 | lld:lifeskim |
pubmed-article:20430811 | lifeskim:mentions | umls-concept:C0392747 | lld:lifeskim |
pubmed-article:20430811 | lifeskim:mentions | umls-concept:C0033268 | lld:lifeskim |
pubmed-article:20430811 | lifeskim:mentions | umls-concept:C0205263 | lld:lifeskim |
pubmed-article:20430811 | lifeskim:mentions | umls-concept:C0443172 | lld:lifeskim |
pubmed-article:20430811 | pubmed:issue | Pt 8 | lld:pubmed |
pubmed-article:20430811 | pubmed:dateCreated | 2010-8-3 | lld:pubmed |
pubmed-article:20430811 | pubmed:abstractText | We have studied the mechanism by which beta-lactam challenge leads to beta-lactamase induction in Aeromonas hydrophila through transposon-insertion mutagenesis. Disruption of the dd-carboxypeptidases/endopeptidases, penicillin-binding protein 4 or BlrY leads to elevated monomer-disaccharide-pentapeptide levels in A. hydrophila peptidoglycan and concomitant overproduction of beta-lactamase through activation of the BlrAB two-component regulatory system. During beta-lactam challenge, monomer-disaccharide-pentapeptide levels increase proportionately with beta-lactamase production and beta-lactamase induction is inhibited by vancomycin, which binds muro-pentapeptides. Taken together, these data strongly suggest that the Aeromonas spp. beta-lactamase regulatory sensor kinase, BlrB, responds to the concentration of monomer-disaccharide-pentapeptide in peptidoglycan. | lld:pubmed |
pubmed-article:20430811 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20430811 | pubmed:language | eng | lld:pubmed |
pubmed-article:20430811 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20430811 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:20430811 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20430811 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20430811 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20430811 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20430811 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20430811 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20430811 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:20430811 | pubmed:month | Aug | lld:pubmed |
pubmed-article:20430811 | pubmed:issn | 1465-2080 | lld:pubmed |
pubmed-article:20430811 | pubmed:author | pubmed-author:WiedemannBern... | lld:pubmed |
pubmed-article:20430811 | pubmed:author | pubmed-author:AvisonMatthew... | lld:pubmed |
pubmed-article:20430811 | pubmed:author | pubmed-author:BennettPeter... | lld:pubmed |
pubmed-article:20430811 | pubmed:author | pubmed-author:WalshTimothy... | lld:pubmed |
pubmed-article:20430811 | pubmed:author | pubmed-author:AyalaJuan AJA | lld:pubmed |
pubmed-article:20430811 | pubmed:author | pubmed-author:NiumsupPannik... | lld:pubmed |
pubmed-article:20430811 | pubmed:author | pubmed-author:BakerJenny... | lld:pubmed |
pubmed-article:20430811 | pubmed:author | pubmed-author:TaylerAmy EAE | lld:pubmed |
pubmed-article:20430811 | pubmed:author | pubmed-author:WestphalKatri... | lld:pubmed |
pubmed-article:20430811 | pubmed:author | pubmed-author:ZhangLufeiL | lld:pubmed |
pubmed-article:20430811 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:20430811 | pubmed:volume | 156 | lld:pubmed |
pubmed-article:20430811 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:20430811 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:20430811 | pubmed:pagination | 2327-35 | lld:pubmed |
pubmed-article:20430811 | pubmed:meshHeading | pubmed-meshheading:20430811... | lld:pubmed |
pubmed-article:20430811 | pubmed:meshHeading | pubmed-meshheading:20430811... | lld:pubmed |
pubmed-article:20430811 | pubmed:meshHeading | pubmed-meshheading:20430811... | lld:pubmed |
pubmed-article:20430811 | pubmed:meshHeading | pubmed-meshheading:20430811... | lld:pubmed |
pubmed-article:20430811 | pubmed:meshHeading | pubmed-meshheading:20430811... | lld:pubmed |
pubmed-article:20430811 | pubmed:meshHeading | pubmed-meshheading:20430811... | lld:pubmed |
pubmed-article:20430811 | pubmed:meshHeading | pubmed-meshheading:20430811... | lld:pubmed |
pubmed-article:20430811 | pubmed:meshHeading | pubmed-meshheading:20430811... | lld:pubmed |
pubmed-article:20430811 | pubmed:year | 2010 | lld:pubmed |
pubmed-article:20430811 | pubmed:articleTitle | Induction of beta-lactamase production in Aeromonas hydrophila is responsive to beta-lactam-mediated changes in peptidoglycan composition. | lld:pubmed |
pubmed-article:20430811 | pubmed:affiliation | Department of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK. | lld:pubmed |
pubmed-article:20430811 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:20430811 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |