pubmed-article:20426206 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:20426206 | lifeskim:mentions | umls-concept:C0442043 | lld:lifeskim |
pubmed-article:20426206 | lifeskim:mentions | umls-concept:C0314719 | lld:lifeskim |
pubmed-article:20426206 | lifeskim:mentions | umls-concept:C1704922 | lld:lifeskim |
pubmed-article:20426206 | lifeskim:mentions | umls-concept:C0015219 | lld:lifeskim |
pubmed-article:20426206 | pubmed:issue | Pt 2 | lld:pubmed |
pubmed-article:20426206 | pubmed:dateCreated | 2010-4-29 | lld:pubmed |
pubmed-article:20426206 | pubmed:abstractText | We address the problem of identifying dry areas in the tear film as part of a diagnostic tool for dry-eye syndrome. The requirement is to identify and measure the growth of the dry regions to provide a time-evolving map of degrees of dryness. We segment dry regions using a multi-label graph-cut algorithm on the 3D spatio-temporal volume of frames from a video sequence. To capture the fact that dryness increases over the time of the sequence, we use a time-asymmetric cost function that enforces a constraint that the dryness of each pixel monotonically increases. We demonstrate how this increases our estimation's reliability and robustness. We tested the method on a set of videos and suggest further research using a similar approach. | lld:pubmed |
pubmed-article:20426206 | pubmed:language | eng | lld:pubmed |
pubmed-article:20426206 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426206 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:20426206 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:20426206 | pubmed:author | pubmed-author:GuillonJean-P... | lld:pubmed |
pubmed-article:20426206 | pubmed:author | pubmed-author:CarrPeterP | lld:pubmed |
pubmed-article:20426206 | pubmed:author | pubmed-author:HartleyRichar... | lld:pubmed |
pubmed-article:20426206 | pubmed:author | pubmed-author:YedidyaTamirT | lld:pubmed |
pubmed-article:20426206 | pubmed:volume | 12 | lld:pubmed |
pubmed-article:20426206 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:20426206 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:20426206 | pubmed:pagination | 976-84 | lld:pubmed |
pubmed-article:20426206 | pubmed:meshHeading | pubmed-meshheading:20426206... | lld:pubmed |
pubmed-article:20426206 | pubmed:meshHeading | pubmed-meshheading:20426206... | lld:pubmed |
pubmed-article:20426206 | pubmed:meshHeading | pubmed-meshheading:20426206... | lld:pubmed |
pubmed-article:20426206 | pubmed:meshHeading | pubmed-meshheading:20426206... | lld:pubmed |
pubmed-article:20426206 | pubmed:meshHeading | pubmed-meshheading:20426206... | lld:pubmed |
pubmed-article:20426206 | pubmed:meshHeading | pubmed-meshheading:20426206... | lld:pubmed |
pubmed-article:20426206 | pubmed:meshHeading | pubmed-meshheading:20426206... | lld:pubmed |
pubmed-article:20426206 | pubmed:meshHeading | pubmed-meshheading:20426206... | lld:pubmed |
pubmed-article:20426206 | pubmed:meshHeading | pubmed-meshheading:20426206... | lld:pubmed |
pubmed-article:20426206 | pubmed:meshHeading | pubmed-meshheading:20426206... | lld:pubmed |
pubmed-article:20426206 | pubmed:meshHeading | pubmed-meshheading:20426206... | lld:pubmed |
pubmed-article:20426206 | pubmed:meshHeading | pubmed-meshheading:20426206... | lld:pubmed |
pubmed-article:20426206 | pubmed:meshHeading | pubmed-meshheading:20426206... | lld:pubmed |
pubmed-article:20426206 | pubmed:year | 2009 | lld:pubmed |
pubmed-article:20426206 | pubmed:articleTitle | Enforcing monotonic temporal evolution in dry eye images. | lld:pubmed |
pubmed-article:20426206 | pubmed:affiliation | The Australian National University. | lld:pubmed |
pubmed-article:20426206 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:20426206 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |