Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20386694rdf:typepubmed:Citationlld:pubmed
pubmed-article:20386694lifeskim:mentionsumls-concept:C1519249lld:lifeskim
pubmed-article:20386694lifeskim:mentionsumls-concept:C1442162lld:lifeskim
pubmed-article:20386694lifeskim:mentionsumls-concept:C1264693lld:lifeskim
pubmed-article:20386694lifeskim:mentionsumls-concept:C0542560lld:lifeskim
pubmed-article:20386694lifeskim:mentionsumls-concept:C0870078lld:lifeskim
pubmed-article:20386694lifeskim:mentionsumls-concept:C0681493lld:lifeskim
pubmed-article:20386694lifeskim:mentionsumls-concept:C1550718lld:lifeskim
pubmed-article:20386694lifeskim:mentionsumls-concept:C1552871lld:lifeskim
pubmed-article:20386694lifeskim:mentionsumls-concept:C0205352lld:lifeskim
pubmed-article:20386694lifeskim:mentionsumls-concept:C2828393lld:lifeskim
pubmed-article:20386694pubmed:issue4lld:pubmed
pubmed-article:20386694pubmed:dateCreated2010-4-13lld:pubmed
pubmed-article:20386694pubmed:abstractTextUniform sampling from graphical realizations of a given degree sequence is a fundamental component in simulation-based measurements of network observables, with applications ranging from epidemics, through social networks to Internet modeling. Existing graph sampling methods are either link-swap based (Markov-Chain Monte Carlo algorithms) or stub-matching based (the Configuration Model). Both types are ill-controlled, with typically unknown mixing times for link-swap methods and uncontrolled rejections for the Configuration Model. Here we propose an efficient, polynomial time algorithm that generates statistically independent graph samples with a given, arbitrary, degree sequence. The algorithm provides a weight associated with each sample, allowing the observable to be measured either uniformly over the graph ensemble, or, alternatively, with a desired distribution. Unlike other algorithms, this method always produces a sample, without back-tracking or rejections. Using a central limit theorem-based reasoning, we argue, that for large , and for degree sequences admitting many realizations, the sample weights are expected to have a lognormal distribution. As examples, we apply our algorithm to generate networks with degree sequences drawn from power-law distributions and from binomial distributions.lld:pubmed
pubmed-article:20386694pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20386694pubmed:languageenglld:pubmed
pubmed-article:20386694pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20386694pubmed:citationSubsetIMlld:pubmed
pubmed-article:20386694pubmed:statusMEDLINElld:pubmed
pubmed-article:20386694pubmed:issn1932-6203lld:pubmed
pubmed-article:20386694pubmed:authorpubmed-author:ToroczkaiZolt...lld:pubmed
pubmed-article:20386694pubmed:authorpubmed-author:BasslerKevin...lld:pubmed
pubmed-article:20386694pubmed:authorpubmed-author:KimHyunjuHlld:pubmed
pubmed-article:20386694pubmed:authorpubmed-author:Del...lld:pubmed
pubmed-article:20386694pubmed:issnTypeElectroniclld:pubmed
pubmed-article:20386694pubmed:volume5lld:pubmed
pubmed-article:20386694pubmed:ownerNLMlld:pubmed
pubmed-article:20386694pubmed:authorsCompleteYlld:pubmed
pubmed-article:20386694pubmed:paginatione10012lld:pubmed
pubmed-article:20386694pubmed:meshHeadingpubmed-meshheading:20386694...lld:pubmed
pubmed-article:20386694pubmed:meshHeadingpubmed-meshheading:20386694...lld:pubmed
pubmed-article:20386694pubmed:meshHeadingpubmed-meshheading:20386694...lld:pubmed
pubmed-article:20386694pubmed:meshHeadingpubmed-meshheading:20386694...lld:pubmed
pubmed-article:20386694pubmed:meshHeadingpubmed-meshheading:20386694...lld:pubmed
pubmed-article:20386694pubmed:meshHeadingpubmed-meshheading:20386694...lld:pubmed
pubmed-article:20386694pubmed:year2010lld:pubmed
pubmed-article:20386694pubmed:articleTitleEfficient and exact sampling of simple graphs with given arbitrary degree sequence.lld:pubmed
pubmed-article:20386694pubmed:affiliationDepartment of Physics, University of Houston, Houston, Texas, United States of America.lld:pubmed
pubmed-article:20386694pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:20386694pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed
pubmed-article:20386694pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed