Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20375447rdf:typepubmed:Citationlld:pubmed
pubmed-article:20375447lifeskim:mentionsumls-concept:C1101610lld:lifeskim
pubmed-article:20375447lifeskim:mentionsumls-concept:C1707455lld:lifeskim
pubmed-article:20375447lifeskim:mentionsumls-concept:C0681842lld:lifeskim
pubmed-article:20375447lifeskim:mentionsumls-concept:C1158478lld:lifeskim
pubmed-article:20375447lifeskim:mentionsumls-concept:C0002045lld:lifeskim
pubmed-article:20375447lifeskim:mentionsumls-concept:C1705422lld:lifeskim
pubmed-article:20375447lifeskim:mentionsumls-concept:C2603343lld:lifeskim
pubmed-article:20375447lifeskim:mentionsumls-concept:C1521840lld:lifeskim
pubmed-article:20375447pubmed:issue3lld:pubmed
pubmed-article:20375447pubmed:dateCreated2010-4-8lld:pubmed
pubmed-article:20375447pubmed:abstractTextmicroRNAs are short RNA fragments that have the capacity of regulating hundreds of target gene expression. Currently, due to lack of high-throughput experimental methods for miRNA target identification, a collection of computational target prediction approaches have been developed. However, these approaches deal with different features or factors are weighted differently resulting in diverse range of predictions. The prediction accuracy remains uncertain. In this paper, three commonly used target prediction algorithms are evaluated and further integrated using algorithm combination, ranking aggregation and Bayesian Network classification. Our results revealed that each individual prediction algorithm displays its advantages as was shown on different test data sets. Among different integration strategies, the application of Bayesian Network classifier on the features calculated from multiple prediction methods significantly improved target prediction accuracy.lld:pubmed
pubmed-article:20375447pubmed:languageenglld:pubmed
pubmed-article:20375447pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20375447pubmed:citationSubsetIMlld:pubmed
pubmed-article:20375447pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20375447pubmed:statusMEDLINElld:pubmed
pubmed-article:20375447pubmed:issn1613-4516lld:pubmed
pubmed-article:20375447pubmed:authorpubmed-author:VerbeekFons...lld:pubmed
pubmed-article:20375447pubmed:authorpubmed-author:ZhangYanjuYlld:pubmed
pubmed-article:20375447pubmed:issnTypeElectroniclld:pubmed
pubmed-article:20375447pubmed:volume7lld:pubmed
pubmed-article:20375447pubmed:ownerNLMlld:pubmed
pubmed-article:20375447pubmed:authorsCompleteYlld:pubmed
pubmed-article:20375447pubmed:meshHeadingpubmed-meshheading:20375447...lld:pubmed
pubmed-article:20375447pubmed:meshHeadingpubmed-meshheading:20375447...lld:pubmed
pubmed-article:20375447pubmed:meshHeadingpubmed-meshheading:20375447...lld:pubmed
pubmed-article:20375447pubmed:meshHeadingpubmed-meshheading:20375447...lld:pubmed
pubmed-article:20375447pubmed:meshHeadingpubmed-meshheading:20375447...lld:pubmed
pubmed-article:20375447pubmed:year2010lld:pubmed
pubmed-article:20375447pubmed:articleTitleComparison and integration of target prediction algorithms for microRNA studies.lld:pubmed
pubmed-article:20375447pubmed:affiliationSection Imaging and BioInformatics, Leiden Institute of Advanced Computer Science,Leiden University, The Netherlands. yanju@liacs.nllld:pubmed
pubmed-article:20375447pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:20375447pubmed:publicationTypeComparative Studylld:pubmed